Skip to main content

Site-Specific Bioconjugation Using SMARTag® Technology: A Practical and Effective Chemoenzymatic Approach to Generate Antibody–Drug Conjugates

  • Protocol
  • First Online:
Bioconjugation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2033))

Abstract

As a critical feature of the next generation of antibody–drug conjugates (ADCs), site-specific bioconjugation approaches can help to optimize stability, pharmacokinetics, efficacy, and safety as well as improve manufacturing consistency. The SMARTag® technology platform offers a practical and efficient chemoenzymatic solution for site-specific protein modifications. A bioorthogonal aldehyde handle is introduced through the oxidation of a cysteine residue, embedded in a specific peptide sequence (CxPxR), to the aldehyde-bearing formylglycine (fGly). This enzymatic modification is carried out by the formylglycine-generating enzyme (FGE). The broad recognition of this short sequence by FGE within the context of heterologous proteins allows for the introduction of fGly residues at chosen sites in proteins expressed in prokaryotic and eukaryotic systems. The protocol presented here describes the methods for expressing fGly-containing antibodies in eukaryotic cells and subsequent site-specific conjugation with a payload-linker using aldehyde-specific Hydrazino-Iso-Pictet–Spengler (HIPS) chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23(9):1137–1146

    Article  CAS  Google Scholar 

  2. Beck A, Goetsch L, Dumontet C et al (2017) Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 16(5):315–337

    Article  CAS  Google Scholar 

  3. Wang L, Amphlett G, Blättler WA et al (2005) Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci 14(9):2436–2446

    Article  CAS  Google Scholar 

  4. Kim MT, Chen Y, Marhoul J et al (2014) Statistical modeling of the drug load distribution on trastuzumab emtansine (Kadcyla), a lysine-linked antibody drug conjugate. Bioconjug Chem 25(7):1223–1232

    Article  CAS  Google Scholar 

  5. Bross PF, Beitz J, Chen G et al (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7(6):1490–1496

    CAS  PubMed  Google Scholar 

  6. Hamblett KJ, Senter PD, Chace DF et al (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10(20):7063–7070

    Article  CAS  Google Scholar 

  7. Wakankar A, Chen Y, Gokarn Y et al (2014) Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs 3(2):161–172

    Article  Google Scholar 

  8. Junutula JR, Raab H, Clark S et al (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26(8):925–932

    Article  CAS  Google Scholar 

  9. Axup JY, Bajjuri KM, Ritland M et al (2012) Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci U S A 109(40):16101–16106

    Article  CAS  Google Scholar 

  10. Zimmerman ES, Heibeck TH, Gill A et al (2014) Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem 25(2):351–361

    Article  CAS  Google Scholar 

  11. VanBrunt MP, Shanebeck K, Caldwell Z et al (2015) Genetically encoded azide containing amino acid in mammalian cells enables site-specific antibody-drug conjugates using click cycloaddition chemistry. Bioconjug Chem 26(11):2249–2260

    Article  CAS  Google Scholar 

  12. Hofer T, Skeffington LR, Chapman CM et al (2009) Molecularly defined antibody conjugation through a selenocysteine interface. Biochemistry 48(50):12047–12057

    Article  CAS  Google Scholar 

  13. Li X, Fang T, Boons G-J (2014) The preparation of well-defined antibody–drug conjugates through glycan remodeling and strain promoted azide-alkyne cycloadditions. Angew Chem Int Ed Engl 53(28):7179–7182

    Article  CAS  Google Scholar 

  14. Okeley NM, Toki BE, Zhang X et al (2013) Metabolic engineering of monoclonal antibody carbohydrates for antibody-drug conjugation. Bioconjug Chem 24(10):1650–1655

    Article  CAS  Google Scholar 

  15. Zhu Z, Ramakrishnan B, Li J et al (2014) Site-specific antibody-drug conjugation through an engineered glycotransferase and a chemically reactive sugar. MAbs 6(5):1190–1200

    Article  Google Scholar 

  16. Tang F, Wang LX, Huang W (2017) Chemoenzymatic synthesis of glycoengineered IgG antibodies and glycosite-specific antibody-drug conjugates. Nat Protoc 12(8):1702–1721

    Article  CAS  Google Scholar 

  17. Zhou Q, Stefano JE, Manning C et al (2014) Site-specific antibody-drug conjugation through glycoengineering. Bioconjug Chem 25(3):510–520

    Article  CAS  Google Scholar 

  18. Strop P, Liu SH, Dorywalska M et al (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 20(2):161–167

    Article  CAS  Google Scholar 

  19. Dennler P, Chiotellis A, Fischer E et al (2014) Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody-drug conjugates. Bioconjug Chem 25(3):569–578

    Article  CAS  Google Scholar 

  20. Stefan N, Gébleux R, Waldmeier L et al (2017) Highly potent, anthracycline-based antibody-drug conjugates generated by enzymatic, site-specific conjugation. Mol Cancer Ther 16(5):879–892

    Article  CAS  Google Scholar 

  21. York D, Baker J, Holder PG et al (2016) Generating aldehyde-tagged antibodies with high titers and high formylglycine yields by supplementing culture media with copper(II). BMC Biotechnol 16:23. https://doi.org/10.1186/s12896-016-0254-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rabuka D, Rush JS, de Hart GW et al (2012) Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nat Protoc 7(6):1052–1067

    Article  CAS  Google Scholar 

  23. Kalia J, Raines RT (2008) Hydrolytic stability of hydrazones and oximes. Angew Chem Int Ed Engl 47(39):7523–7526

    Article  CAS  Google Scholar 

  24. Agarwal P, Kudirka R, Albers AE et al (2013) Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjug Chem 24(6):846–851

    Article  CAS  Google Scholar 

  25. Drake PM, Albers AE, Baker J et al (2014) Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjug Chem 25(7):1331–1341

    Article  CAS  Google Scholar 

  26. Drake PM, Carlson A, McFarland JM et al (2018) CAT-02-106, a site-specifically conjugated anti-CD22 antibody bearing an MDR1-resistant maytansine payload yields excellent efficacy and safety in preclinical models. Mol Cancer Ther 17(1):161–168

    Article  CAS  Google Scholar 

  27. Widdison WC, Wilhelm SD, Cavanagh EE et al (2006) Semisynthetic maytansine analogues for the targeted treatment of cancer. J Med Chem 49(14):4392–4408

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Rabuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, J., Barfield, R.M., Rabuka, D. (2019). Site-Specific Bioconjugation Using SMARTag® Technology: A Practical and Effective Chemoenzymatic Approach to Generate Antibody–Drug Conjugates. In: Massa, S., Devoogdt, N. (eds) Bioconjugation. Methods in Molecular Biology, vol 2033. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9654-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9654-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9653-7

  • Online ISBN: 978-1-4939-9654-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics