Skip to main content

Guidelines for Gating Flow Cytometry Data for Immunological Assays

  • Protocol
  • First Online:
Immunophenotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2032))

Abstract

“Gating” refers to the selection of successive subpopulations of cells for analysis in flow cytometry. It is usually performed manually, based on expert knowledge of cell characteristics. However, there can be considerable disagreement in how gates should be applied, even between individuals experienced in the field. While clinical software often automates gating, and some guidelines do exist (especially for clinical assays), there are no comprehensive guidelines across the various types of immunological assays performed using flow cytometry. Here we attempt to provide such guidelines, focused on the most general and pervasive types of gates, why they are important, and what recommendations can be made regarding their use. We do so through the display of example data, collected by academic, government, and industry representatives. These guidelines should be of value to both novice and experienced flow cytometrists analyzing a wide variety of immunological assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burel JG, Qian Y, Lindestam Arlehamn C et al (2017) An integrated workflow to assess technical and biological variability of cell population frequencies in human peripheral blood by flow cytometry. J Immunol 198:1748–1758

    Article  CAS  Google Scholar 

  2. Disis ML, dela Rosa C, Goodell V et al (2006) Maximizing the retention of antigen specific lymphocyte function after cryopreservation. J Immunol Methods 308:13–18

    Article  CAS  Google Scholar 

  3. Posevitz-Fejfár A, Posevitz V, Gross CC et al (2014) Effects of blood transportation on human peripheral mononuclear cell yield, phenotype and function: implications for immune cell biobanking. PLoS One 9:e115920

    Article  Google Scholar 

  4. Perfetto SP, Chattopadhyay PK, Lamoreaux L et al (2006) Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry. J Immunol Methods 313:199–208

    Article  CAS  Google Scholar 

  5. Shankey TV, Rabinovitch PS, Bagwell B et al (1993) Guidelines for implementation of clinical DNA cytometry. International Society for Analytical Cytology. Cytometry 14:472–477

    Article  CAS  Google Scholar 

  6. Perfetto SP, Roederer M (2007) Increased immunofluorescence sensitivity using 532 nm laser excitation. Cytometry A 71:73–79

    Article  Google Scholar 

  7. Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69:1037–1042

    Article  Google Scholar 

  8. Watson JV (1987) Time, a quality-control parameter in flow cytometry. Cytometry 8:646–649

    Article  CAS  Google Scholar 

  9. Fletez-Brant K, Špidlen J, Brinkman RR et al (2016) flowClean: automated identification and removal of fluorescence anomalies in flow cytometry data. Cytometry A 89:461–471

    Article  CAS  Google Scholar 

  10. Maecker HT, McCoy JP, Nussenblatt R (2012) Standardizing immunophenotyping for the Human Immunology Project. Nat Rev Immunol 12:191–200

    Article  CAS  Google Scholar 

  11. Lamoreaux L, Roederer M, Koup R (2006) Intracellular cytokine optimization and standard operating procedure. Nat Protoc 1:1507–1516

    Article  CAS  Google Scholar 

  12. Maecker HT, Frey T, Nomura LE et al (2004) Selecting fluorochrome conjugates for maximum sensitivity. Cytometry A 62:169–173

    Article  Google Scholar 

  13. Roederer M (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry A 45:194–205

    Article  CAS  Google Scholar 

  14. Chevrier S, Crowell HL, Zanotelli VRT et al (2018) Compensation of signal spillover in suspension and imaging mass cytometry. Cell Syst 6:612–620.e5

    Article  CAS  Google Scholar 

  15. Finak G, Perez J-M, Weng A et al (2010) Optimizing transformations for automated, high throughput analysis of flow cytometry data. BMC Bioinformatics 11:546

    Article  Google Scholar 

  16. Novo D, Wood J (2008) Flow cytometry histograms: transformations, resolution, and display. Cytometry A 73:685–692

    Article  Google Scholar 

  17. (1992) Guidelines for the performance of CD4+ T-cell determinations in persons with human immunodeficiency virus infection. MMWR Recomm Rep 41:1–17

    Google Scholar 

  18. (1994) 1994 revised guidelines for the performance of CD4+ T-cell determinations in persons with human immunodeficiency virus (HIV) infections. Centers for Disease Control and Prevention. MMWR Recomm Rep 43:1–21

    Google Scholar 

  19. (1997) 1997 revised guidelines for performing CD4+ T-cell determinations in persons infected with human immunodeficiency virus (HIV). Centers for Disease Control and Prevention. MMWR Recomm Rep 46:1–29

    Google Scholar 

  20. Mandy FF, Nicholson JKA, McDougal JS et al (2003) Guidelines for performing single-platform absolute CD4+ T-cell determinations with CD45 gating for persons infected with human immunodeficiency virus. Centers for Disease Control and Prevention. MMWR Recomm Rep 52:1–13

    PubMed  Google Scholar 

  21. O.W. Health (2007) Laboratory guidelines for enumerating CD4 T lymphocytes in the context of HIV/AIDS. World Health Organization Regional Office for South-East Asia, New Delhi

    Google Scholar 

  22. Sutherland DR, Anderson L, Keeney M et al (1996) The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother 5:213–226

    Article  CAS  Google Scholar 

  23. Illingworth A, Marinov I, Sutherland DR et al (2018) ICCS/ESCCA consensus guidelines to detect GPI-deficient cells in paroxysmal nocturnal hemoglobinuria (PNH) and related disorders part 3—data analysis, reporting and case studies. Cytometry B Clin Cytom 94:49–66

    Article  Google Scholar 

  24. McNeil LK, Price L, Britten CM et al (2013) A harmonized approach to intracellular cytokine staining gating: results from an international multiconsortia proficiency panel conducted by the Cancer Immunotherapy Consortium (CIC/CRI). Cytometry A 83:728–738

    Article  Google Scholar 

  25. Britten CM, Janetzki S, Ben-Porat L et al (2009) Harmonization guidelines for HLA-peptide multimer assays derived from results of a large scale international proficiency panel of the Cancer Vaccine Consortium. Cancer Immunol Immunother 58:1701–1713

    Article  CAS  Google Scholar 

  26. Nomura L, Maino VC, Maecker HT (2008) Standardization and optimization of multiparameter intracellular cytokine staining. Cytometry A 73:984–991

    Article  Google Scholar 

  27. Finak G, Langweiler M, Jaimes M et al (2016) Standardizing flow cytometry immunophenotyping analysis from the human immunophenotyping consortium. Sci Rep 6:20686

    Article  CAS  Google Scholar 

  28. Verschoor CP, Lelic A, Bramson JL et al (2015) An introduction to automated flow cytometry gating tools and their implementation. Front Immunol 6:380

    Article  Google Scholar 

  29. Mair F, Hartmann FJ, Mrdjen D et al (2016) The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur J Immunol 46:34–43

    Article  CAS  Google Scholar 

  30. Martin JC, Swartzendruber DE (1980) Time: a new parameter for kinetic measurements in flow cytometry. Science 207:199–201

    Article  CAS  Google Scholar 

  31. Hoffman RA (2009) Pulse width for particle sizing. Curr Protoc Cytom Chapter 1:Unit 1.23

    Google Scholar 

  32. Wersto RP, Chrest FJ, Leary JF et al (2001) Doublet discrimination in DNA cell-cycle analysis. Cytometry 46:296–306

    Article  CAS  Google Scholar 

  33. Furman MI, Barnard MR, Krueger LA et al (2001) Circulating monocyte-platelet aggregates are an early marker of acute myocardial infarction. J Am Coll Cardiol 38:1002–1006

    Article  CAS  Google Scholar 

  34. Nomura LE, Walker JM, Maecker HT (2000) Optimization of whole blood antigen-specific cytokine assays for CD4(+) T cells. Cytometry 40:60–68

    Article  CAS  Google Scholar 

  35. Parks DR, Roederer M, Moore WA (2006) A new “Logicle” display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. Cytometry A 69:541–551

    Article  Google Scholar 

  36. Bagwell CB, Hill BL, Herbert DJ et al (2016) Sometimes simpler is better: VLog, a general but easy-to-implement log-like transform for cytometry. Cytometry A 89:1097–1105

    Article  Google Scholar 

  37. Andersen MN, Al-Karradi SNH, Kragstrup TW et al (2016) Elimination of erroneous results in flow cytometry caused by antibody binding to Fc receptors on human monocytes and macrophages. Cytometry A 89:1001–1009

    Article  CAS  Google Scholar 

  38. Richards AJ, Staats J, Enzor J et al (2014) Setting objective thresholds for rare event detection in flow cytometry. J Immunol Methods 409:54–61

    Article  CAS  Google Scholar 

  39. Hultin LE, Chow M, Jamieson BD et al (2010) Comparison of interlaboratory variation in absolute T-cell counts by single-platform and optimized dual-platform methods. Cytometry B Clin Cytom 78:194–200

    PubMed  PubMed Central  Google Scholar 

  40. Vogt RF, Cross GD, Henderson LO et al (1989) Model system evaluating fluorescein-labeled microbeads as internal standards to calibrate fluorescence intensity on flow cytometers. Cytometry 10:294–302

    Article  CAS  Google Scholar 

  41. Maecker HT, Rinfret A, D’Souza P et al (2005) Standardization of cytokine flow cytometry assays. BMC Immunol 6:13

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the EQAPOL consortium and Jennifer Enzor for providing data and analysis examples, and the FOCIS Immunophenotyping Course participants for helpful suggestions and vetting of these guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holden T. Maecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Staats, J., Divekar, A., McCoy, J.P., Maecker, H.T. (2019). Guidelines for Gating Flow Cytometry Data for Immunological Assays. In: McCoy, Jr, J. (eds) Immunophenotyping. Methods in Molecular Biology, vol 2032. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9650-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9650-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9649-0

  • Online ISBN: 978-1-4939-9650-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics