Skip to main content

Immunophenotyping of Acute Lymphoblastic Leukemia

  • Protocol
  • First Online:
Immunophenotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2032))

Abstract

Immunophenotyping by flow cytometry is an important component in the diagnostic evaluation of patients with acute lymphoblastic leukemia. This technique further permits the detection of minimal residual disease after therapy, a robust prognostic factor that may guide individualized treatment. We describe here laboratory methods for both the initial characterization of lymphoblasts at diagnosis, and the detection of rare leukemic lymphoblasts after treatment. In addition to antibody combinations suitable for diagnosis and detection of minimal residual disease, we describe procedures for peripheral blood and bone marrow sample preparation, procedures for labeling of cell-surface and intracellular proteins with fluorochrome-conjugated antibodies, and approaches to analysis of immunophenotypic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swerdlow SH, Campo E, Harris NL et al (2017) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. IARC, Lyon

    Google Scholar 

  2. Borowitz MJ, DiGiuseppe JA (2014) Acute lymphoblastic leukemia/lymphoblastic lymphoma. In: Orazi A, Weiss LM, Foucar K et al (eds) Knowles’ neoplastic hematopathology. Lippincott Williams & Wilkins, Philadelphia, pp 1019–1029

    Google Scholar 

  3. DiGiuseppe JA (2016) Acute lymphoblastic leukemia/lymphoma: diagnosis and minimal residual disease detection by flow cytometric immunophenotyping. In: Detrick B, Hamilton R, Schmitz J (eds) Manual of molecular and clinical laboratory immunology, 8th edn. ASM Press, Washington, D.C., pp 207–216

    Google Scholar 

  4. Wood B, Soma L (2016) Acute myeloid leukemia: diagnosis and minimal residual disease detection by flow cytometry. In: Detrick B, Schmitz J, Hamilton RG (eds) Manual of molecular and clinical laboratory immunology, 8th edn. ASM Press, Washington, D.C.

    Google Scholar 

  5. Borowitz MJ, Bene M-C, Harris NL et al (2017) Acute leukaemias of ambiguous lineage. In: Swerdlow SH, Campo E, Harris NL et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. IARC, Lyon, pp 180–187

    Google Scholar 

  6. Wood BL (2016) Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytometry B Clin Cytom 90:47–53

    Article  Google Scholar 

  7. Gaipa G, Basso G, Biondi A et al (2013) Detection of minimal residual disease in pediatric acute lymphoblastic leukemia. Cytometry B Clin Cytom 84:359–369

    Article  Google Scholar 

  8. Borowitz MJ, Devidas M, Hunger SP et al (2008) Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children's oncology group study. Blood 111:5477–5485

    Article  CAS  Google Scholar 

  9. Wood B (2004) Multicolor immunophenotyping: human immune system hematopoiesis. In: Darzynkiewicz Z, Roederer M, Tanke HJ (eds) Cytometry. New developments, Methods in cell biology, vol 75, 4th edn. Elsevier, San Diego, CA, pp 559–576

    Chapter  Google Scholar 

  10. Wood B (2006) 9-color and 10-color flow cytometry in the clinical laboratory. Arch Pathol Lab Med 130:680–690

    PubMed  Google Scholar 

  11. Keeney M, Wood BL, Hedley BD et al (2017) A QA program for MRD testing demonstrates that systematic education can reduce discordance among experienced interpreters. Cytometry B Clin Cytom 94:239–249

    Article  Google Scholar 

  12. DiGiuseppe J, Tadmor MD, Pe’er D (2015) Detection of minimal residual disease in B lymphoblastic leukemia using viSNE. Cytometry B Clin Cytom 88B:294–304

    Article  Google Scholar 

  13. Gaipa G, Basso G, Aliprandi S et al (2008) Prednisone induces immunophenotypic modulation of CD10 and CD34 in nonapoptotic B-cell precursor acute lymphoblastic leukemia cells. Cytometry B Clin Cytom 74:150–155

    Article  Google Scholar 

  14. Roshal M, Fromm JR, Winter S et al (2010) Immaturity associated antigens are lost during induction for T cell lymphoblastic leukemia: implications for minimal residual disease detection. Cytometery B Clin Cytom 78:139–146

    Article  Google Scholar 

  15. McKenna RW, Washington LT, Aquino DB et al (2001) Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood 98:2498–2507

    Article  CAS  Google Scholar 

  16. Kantarjian H, Stein A, Gokbuget N et al (2017) Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med 376:836–847

    Article  CAS  Google Scholar 

  17. Park JH, Riviere I, Gonen M et al (2018) Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 378:449–459

    Article  CAS  Google Scholar 

  18. Cherian S, Miller V, McCullouch V et al (2018) A novel flow cytometric assay for detection of residual disease in patients with B-lymphoblastic leukemia/lymphoma post anti-CD19 therapy. Cytometery B Clin Cytom 94B:112–120

    Article  Google Scholar 

  19. DiGiuseppe JA, Fuller SG, Borowitz MJ (2009) Overexpression of CD49f in precursor B-cell acute lymphoblastic leukemia: potential usefulness in minimal residual disease detection. Cytometry B Clin Cytom 76:150–155

    Article  Google Scholar 

  20. Shinoda-Matsuoka H, DiGiuseppe JA (2009) Overexpression of CD49f in precursor B-cell acute lymphoblastic leukemia: efficiency of minimal residual disease (MRD) detection by flow cytometric immunophenotyping compared with commonly used markers. Mod Pathol 89:388A

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Brent Wood, University of Washington, Seattle, for his generous gift of WoodList 2.7.8 software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. DiGiuseppe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

DiGiuseppe, J.A., Cardinali, J.L. (2019). Immunophenotyping of Acute Lymphoblastic Leukemia. In: McCoy, Jr, J. (eds) Immunophenotyping. Methods in Molecular Biology, vol 2032. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9650-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9650-6_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9649-0

  • Online ISBN: 978-1-4939-9650-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics