Skip to main content

Optimal Conditions for the Direct RP-HPLC Determination of Underivatized Amino Acids with Online Multiple Detection

  • Protocol
  • First Online:
Amino Acid Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2030))

  • 2200 Accesses

Abstract

The combined use of a dual-UV detector as well as a fluorimetric and a multielectrode electrochemical detector (equipped with a dual electrode, consisting of a conventional size 3 mm diameter glassy carbon electrode (GCE) and of a pair of 30 μm thick carbon microfibers) is proposed for the detection of the following 15 underivatized amino acids: l-histidine (His), l-cysteine (Cys), creatine (Crn), S-methyl-l-cysteine (Me-Cys), dl-homocysteine (Hcy), l-methionine (Met), beta-(3,4-dihydroxyphenyl)-l-alanine (DOPA), l-tyrosine (Tyr), dl-m-tyrosine (m-Tyr), l-a-methyl-DOPA (Me-DOPA), l-phenylalanine (Phe), dl-alpha-methyltyrosine (Me-Tyr), 5-hydroxy-tryptophan (5-HTP), 3-nitro-l-tyrosine (NO2Tyr), and l-tryptophan (Trp), as well as of 2 dipeptides l-cystathionine (Cysta) and l-carnosine (Car), and of creatinine (Cre). A multilinear solvent (acetonitrile) gradient elution program, determined by a simple optimization algorithm, is required for the efficient reversed-phase separation of the above mixture of 18 solutes within 27 min at a flow rate of 1.0 mL/min and at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yokoyama Y, Tjuji S, Sato H (2005) Simultaneous determination of creatinine, creatine, and UV-absorbing amino acids using dual-mode gradient low-capacity cation-exchange chromatography. J Chromatogr A 1085:110–116

    Article  CAS  Google Scholar 

  2. Petritis K, Elfakir C, Dreux M (2002) A comparative study of commercial liquid chromatographic detectors for the analysis of underivatized amino acids. J Chromatogr A 961:9–21

    Article  CAS  Google Scholar 

  3. Kuban P, Hauser PC (2006) Application of gradient programs for the determination of underivatized amino acids and small peptides in reversed-phase high-performance liquid chromatography with contactless conductivity detection. J Chromatogr A 1128:97–104

    Article  CAS  Google Scholar 

  4. Smith CI et al (2009) A three-phase liquid chromatographic method for delta C-13 analysis of amino acids from biological protein hydrolysates using liquid chromatography-isotope ratio mass spectrometry. Anal Biochem 390:165–172

    Article  CAS  Google Scholar 

  5. Zoppa M et al (2006) Method for the quantification of underivatized amino acids on dry blood spots from newborn screening by HPLC-ESI-MS/MS. J Chromatogr B 831:267–273

    Article  CAS  Google Scholar 

  6. Thiele B et al (2008) Analysis of amino acids without derivatization in barley extracts by LC-MS-MS. Anal Bioanal Chem 391:2663–2672

    Article  CAS  Google Scholar 

  7. McCullagh J, Gaye-Siessegger J, Focken U (2008) Determination of underivatized amino acid delta C-13 by liquid chromatography/isotope ratio mass spectrometry for nutritional studies: the effect of dietary non-essential amino acid profile on the isotopic signature of individual amino acids in fish. Rapid Commun Mass Spectrom 22:1817–1822

    Article  CAS  Google Scholar 

  8. Armstrong M, Jonscher K, Reisdorph NA (2007) Analysis of 25 underivatized amino acids in human plasma using ion-pairing reversed-phase liquid chromatography/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 21:2717–2726

    Article  CAS  Google Scholar 

  9. Scharff-Poulsen AM, Schou C, Egsgaard H (2007) Direct analysis of N-15-label in amino and amide groups of glutamine and asparagine. J Mass Spectrom 42:161–170

    Article  CAS  Google Scholar 

  10. de Person M, Chairnbault P, Elfakir C (2008) Analysis of native amino acids by liquid chromatography/electrospray ionization mass spectrometry: comparative study between two sources and interfaces. J Mass Spectrom 43:204–215

    Article  Google Scholar 

  11. Wood AT, Hall MR (2000) Reversed-phase high-performance liquid chromatography of catecholamines and indoleamines using a simple gradient solvent system and native fluorescence detection. J Chromatogr B 744:221–225

    Article  CAS  Google Scholar 

  12. Yan D et al (2007) Direct determination of fourteen underivatized amino acids from Whitmania pigra by using liquid chromatography-evaporative light scattering detection. J Chromatogr A 1138:301–304

    Article  CAS  Google Scholar 

  13. Petritis K et al (2002) Evaporative light scattering detection for in-line monitoring of stopped-flow liquid chromatography-nuclear magnetic resonance analysis of compounds with weak or no chromophore groups. J Sep Sci 25:593–600

    Article  CAS  Google Scholar 

  14. Cobb Z et al (2001) Evaporative light-scattering detection coupled to microcolumn liquid chromatography for the analysis of underivatized amino acids: Sensitivity, linearity of response and comparisons with UV absorbance detection. J Microcolumn Sep 13:169–175

    Article  CAS  Google Scholar 

  15. Accinni R et al (2000) Screening of homocysteine from newborn blood spots by high-performance liquid chromatography with coulometric array detection. J Chromatogr A 896:183–189

    Article  CAS  Google Scholar 

  16. Majidi MRH et al (2006) Simultaneous voltammetric determination of cysteine, tyrosine and tryptophan by using principal component artificial neural networks. Asian J Chem 18:2445–2457

    CAS  Google Scholar 

  17. Casella IG, Contursi M (2003) Isocratic ion chromatographic determination of underivatized amino acids by electrochemical detection. Anal Chim Acta 478:179–189

    Article  CAS  Google Scholar 

  18. Sato K et al (2000) Nickel-titanium alloy electrodes for stable amperometric detection of underivatized amino acids in anion-exchange chromatography. Talanta 53:1037–1044

    Article  Google Scholar 

  19. Casella IC, Gatta M, Cataldi TRI (2000) Amperometric determination of underivatized amino acids at a nickel-modified gold electrode by anion-exchange chromatography. J Chromatogr A 878:57–67

    Article  CAS  Google Scholar 

  20. Zen J-M et al (2004) Amino acid analysis using disposable copper nanoparticle plated electrodes. Analyst 129:841–845

    Article  CAS  Google Scholar 

  21. Pei JH, Li XY (2000) Determination of underivatized amino acids by high-performance liquid chromatography and electrochemical detection at an amino acid oxidase immobilized CuPtCl6 modified electrode. Fresen J Anal Chem 367:707–713

    Article  CAS  Google Scholar 

  22. Agrafiotou P, Sotiropoulos S, Pappa-Louisi A (2009) Direct RP-HPLC determination of underivatized amino acids with online dual UV absorbance, fluorescence, and multiple electrochemical detection. J Sep Sci 32:949–954

    Article  CAS  Google Scholar 

  23. Pappa-Louisi A, Nikitas P, Agrafiotou P (2006) Column equilibration effects in gradient elution in reversed-phase liquid chromatography. J Chromatogr A 1127:97–107

    Article  CAS  Google Scholar 

  24. Nikitas P, Pappa-Louisi A, Agrafiotou P (2006) Multilinear gradient elution optimization in reversed-phase liquid chromatography using genetic algorithms. J Chromatogr A 1120:299–307

    Article  CAS  Google Scholar 

  25. Yan D, Li G (2006) Direct determination of 14 underivatized amino acids in leech by reversed phase high performance liquid chromatography. Chin J Anal Chem 34:705–708

    Article  CAS  Google Scholar 

  26. Wu ZP et al (2004) Determination of phenylalanine isotope ratio enrichment by liquid chromatography/time-of-flight mass spectrometry. Eur J Mass Spectrom 10:619–623

    Article  CAS  Google Scholar 

  27. Agrafiotou P, Sotiropoulos S (2003) Characterisation of a simple electrochemical detector for high-performance liquid chromatography and flow-injection analysis based on carbon microcylinder electrodes. Anal Chim Acta 497:175–189

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by European Union/European Social Fund (PhD scholarship, Hrakleitos I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pappa-Louisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pappa-Louisi, A., Agrafiotou, P., Sotiropoulos, S. (2019). Optimal Conditions for the Direct RP-HPLC Determination of Underivatized Amino Acids with Online Multiple Detection. In: Alterman, M. (eds) Amino Acid Analysis. Methods in Molecular Biology, vol 2030. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9639-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9639-1_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9638-4

  • Online ISBN: 978-1-4939-9639-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics