Skip to main content

Reverse Genetic Analysis of Antiviral Resistance Signaling and the Resistance Mechanism in Arabidopsis thaliana

  • Protocol
  • First Online:
Book cover Antiviral Resistance in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2028))

  • 766 Accesses

Abstract

Antiviral RNA silencing and the resistance gene-conferred defense response are major antiviral immune systems in plants. Several of the components involved have been genetically or biochemically identified in Arabidopsis thaliana. One powerful tool to dissect antiviral immune systems involves a reverse genetic approach that analyzes Arabidopsis mutant lines with impaired antiviral defense responses. In particular, to better understand the signaling networks involved in the resistance gene-conferred antiviral response in host plants, establishment of mutant lines carrying the homozygous mutant allele and antiviral resistance gene is required. The information on well-characterized defense-related signaling mutant alleles and the PCR-based genotyping method provided in this chapter allows the efficient selection of Arabidopsis mutant lines that can be used to study antiviral resistance signaling networks and resistance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220

    Article  CAS  PubMed  Google Scholar 

  2. Csorba T, Kontra L, Burgyán J (2015) Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479-480:85–103

    Article  CAS  PubMed  Google Scholar 

  3. de Ronde D, Butterbach P, Kormelink R (2014) Dominant resistance against plant viruses. Front Plant Sci 5:1–17

    Article  Google Scholar 

  4. Hashimoto M, Neriya Y, Yamaji Y et al (2016) Recessive resistance to plant viruses: potential resistance genes beyond translation initiation factors. Front Microbiol 7:1695

    Article  PubMed  PubMed Central  Google Scholar 

  5. Peláez P, Sanchez F (2013) Small RNAs in plant defense responses during viral and bacterial interactions: similarities and differences. Front Plant Sci 4:343

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cournoyer P, Dinesh-kumar SP (2011) NB-LRR immune receptors in plant virus defence. In: Caranta C, Aranda MA, Tepfer M, Lopez-Moya JJ (eds) Recent advances in plant virology, 1st edn. Caister Academic Press, Norfolk

    Google Scholar 

  7. Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  8. Sessions A, Burke E, Presting G et al (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rosso MG, Li Y, Strizhov N et al (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259

    Article  CAS  PubMed  Google Scholar 

  10. Kleinboelting N, Huep G, Kloetgen A et al (2012) GABI-Kat SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database. Nucleic Acids Res 40:D1211–D1215

    Article  CAS  PubMed  Google Scholar 

  11. Woody ST, Austin-Phillips S, Amasino RM et al (2007) The WiscDsLox T-DNA collection: an arabidopsis community resource generated by using an improved high-throughput T-DNA sequencing pipeline. J Plant Res 120:157–165

    Article  CAS  PubMed  Google Scholar 

  12. Tissier AF, Marillonnet S, Klimyuk V et al (1999) Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11:1841–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wisman E, Hartmann U, Sagasser M et al (1998) Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Proc Natl Acad Sci U S A 95:12432–12437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang L, Tsuda K, Sato M et al (2009) Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog 5:e1000301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sun T, Zhang Y, Li Y et al (2015) ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nat Commun 6:10159

    Article  CAS  PubMed  Google Scholar 

  16. Yang S, Hua J (2004) A haplotype-specific resistance gene regulated by BONZAI1 in Arabidopsis. Plant Cell 16:1060–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen QF, Xu L, Tan WJ et al (2015) Disruption of the Arabidopsis defense regulator genes SAG101, EDS1, and PAD4 confers enhanced freezing tolerance. Mol Plant 8:1536–1549

    Article  CAS  PubMed  Google Scholar 

  18. Glazebrook J, Rogers EE, Ausubel FM (1996) Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143:973–982

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Reuber TL, Plotnikova JM, Dewdney J et al (1998) Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. Plant J 16:473–485

    Article  CAS  PubMed  Google Scholar 

  20. Gou M, Su N, Zheng J et al (2009) An F-box gene, CPR30, functions as a negative regulator of the defense response in Arabidopsis. Plant J 60:757–770

    Article  CAS  PubMed  Google Scholar 

  21. Nawrath C, Métraux JP (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393–1404

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Heck S, Grau T, Buchala A et al (2003) Genetic evidence that expression of NahG modifies defence pathways independent of salicylic acid biosynthesis in the Arabidopsis-Pseudomonas syringae pv. tomato interaction. Plant J 36:342–352

    Article  CAS  PubMed  Google Scholar 

  23. Century KS, Holubt EB, Staskawiczt BJ (1995) NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc Natl Acad Sci U S A 92:6597–6601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cao H, Bowling SA, Gordon AS et al (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cao H, Glazebrook J, Clarke JD et al (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  CAS  PubMed  Google Scholar 

  26. Nishimura MT, Stein M, Hou B-H et al (2003) Loss of callose synthase results in salicylic acid-dependent disease resistance. Science 301:969–972

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Cheng YT, Qu N et al (2006) Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. Plant J 48:647–656

    Article  CAS  PubMed  Google Scholar 

  28. Shi Z, Maximova S, Liu Y et al (2013) The salicylic acid receptor NPR3 is a negative regulator of the transcriptional defense response during early flower development in Arabidopsis. Mol Plant 6:802–816

    Article  CAS  PubMed  Google Scholar 

  29. Liu G, Holub EB, Alonso JM et al (2005) An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant J 41:304–318

    Article  CAS  PubMed  Google Scholar 

  30. Jirage D, Tootle TL, Reuber TL et al (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci U S A 96:13583–13588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hiruma K, Nishiuchi T, Kato T et al (2011) Arabidopsis ENHANCED DISEASE RESISTANCE 1 is required for pathogen-induced expression of plant defensins in nonhost resistance, and acts through interference of MYC2-mediated repressor function. Plant J 67:980–992

    Article  CAS  PubMed  Google Scholar 

  32. Huang J, Gu M, Lai Z et al (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Feys BJ, Wiermer M, Bhat RA et al (2005) Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell 17:2601–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Langenbach C, Campe R, Schaffrath U et al (2013) UDP-glucosyltransferase UGT84A2/BRT1 is required for Arabidopsis nonhost resistance to the Asian soybean rust pathogen Phakopsora pachyrhizi. New Phytol 198:536–545

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Xu S, Ding P et al (2010) Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc Natl Acad Sci U S A 107:18220–18225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stein M, Dittgen J, Sánchez-Rodríguez C et al (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dewdney J, Reuber TL, Wildermuth MC et al (2000) Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Plant J 24:205–218

    Article  CAS  PubMed  Google Scholar 

  38. Tsuda K, Sato M, Stoddard T et al (2009) Network properties of robust immunity in plants. PLoS Genet 5:e1000772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Gross J, Won KC, Lezhneva L et al (2006) A plant locus essential for phylloquinone (vitamin K1) biosynthesis originated from a fusion of four eubacterial genes. J Biol Chem 281:17189–17196

    Article  CAS  PubMed  Google Scholar 

  40. Miura K, Rus A, Sharkhuu A et al (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci U S A 102:7760–7765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee J, Nam J, Park HC et al (2007) Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J 49:79–90

    Article  CAS  PubMed  Google Scholar 

  42. Song JT, Lu H, McDowell JM et al (2004) A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J 40:200–212

    Article  CAS  PubMed  Google Scholar 

  43. Xu E, Brosché M (2014) Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling. BMC Plant Biol 14:155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Carella P, Kempthorne CJ, Wilson DC et al (2017) Exploring the role of DIR1, DIR1-like and other lipid transfer proteins during systemic immunity in Arabidopsis. Physiol Mol Plant Pathol 97:49–57

    Article  CAS  Google Scholar 

  45. Bartsch M, Gobbato E, Bednarek P et al (2006) Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7. Plant Cell 18:1038–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kieber JJ, Rothenberg M, Roman G et al (1993) CTR1, a negative regulator of the ethylene pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441

    Article  CAS  PubMed  Google Scholar 

  47. Roman G, Lubarsky B, Kieber JJ et al (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics 139:1393–1409

    CAS  PubMed  PubMed Central  Google Scholar 

  48. An F, Zhao Q, Ji Y et al (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-Box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCFEBF1/EBF2- dependent proteolysis of EIN3 transcription factor. Cell 115:667–677

    Article  CAS  PubMed  Google Scholar 

  50. Alonso JM, Stepanova AN, Solano R et al (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci U S A 100:2992–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chang C, Kwok S, Bleecker A et al (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    Article  CAS  PubMed  Google Scholar 

  52. Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    Article  CAS  PubMed  Google Scholar 

  53. Kachroo P, Yoshioka K, Shah J et al (2000) Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and jasmonate independent. Plant Cell 12:677–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guzmán P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    Article  PubMed  PubMed Central  Google Scholar 

  55. Resnick JS, Wen C-K, Shockey JA et al (2006) REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci U S A 103:7917–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alonso JM, Hirayama T, Roman G et al (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    Article  CAS  PubMed  Google Scholar 

  57. Chao Q, Rothenberg M, Solano R et al (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133–1144

    Article  CAS  PubMed  Google Scholar 

  58. Chen H, Xue L, Chintamanani S et al (2009) ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell 21:2527–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Potuschak T, Vansiri A, Binder BM et al (2006) The exoribonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis. Plant Cell 18:3047–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Von Malek B, Van Der Graaff E, Schneitz K et al (2002) The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta 216:187–192

    Article  CAS  Google Scholar 

  61. Xie D-X, Feys BF, James S et al (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    Article  CAS  PubMed  Google Scholar 

  62. Trusov Y, Sewelam N, Rookes JE et al (2009) Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling. Plant J 58:69–81

    Article  CAS  PubMed  Google Scholar 

  63. Staswick PE, Su W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci U S A 89:6837–6840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reichheld J-P, Meyer E, Khafif M et al (2005) AtNTRB is the major mitochondrial thioredoxin reductase in Arabidopsis thaliana. FEBS Lett 579:337–342

    Article  CAS  PubMed  Google Scholar 

  65. Sweat TA, Wolpert TJ (2007) Thioredoxin h5 is required for victorin sensitivity mediated by a CC-NBS-LRR gene in Arabidopsis. Plant Cell 19:673–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522

    Article  CAS  PubMed  Google Scholar 

  67. Frye CA, Innes RW (1998) An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10:947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakagami H, Soukupová H, Schikora A et al (2006) A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281:38697–38704

    Article  CAS  PubMed  Google Scholar 

  69. Su S-H, Bush SM, Zaman N et al (2013) Deletion of a tandem gene gamily in Arabidopsis: increased MEKK2 abundance triggers autoimmunity when the MEKK1-MKK1/2-MPK4 signaling cascade is disrupted. Plant Cell 25:1895–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bush SM, Krysan PJ (2010) iTILLING: a personalized approach to the identification of induced mutations in Arabidopsis. Plant Physiol 154:25–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gao M, Liu J, Bi D et al (2008) MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res 18:1190–1198

    Article  CAS  PubMed  Google Scholar 

  72. Yoo S-D, Cho Y-H, Tena G et al (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451:789–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dóczi R, Brader G, Pettkó-Szandtner A et al (2007) The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell 19:3266–3279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wang H, Ngwenyama N, Liu Y et al (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19:63–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Bush SM, Krysan PJ (2007) Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. J Exp Bot 58:2181–2191

    Article  CAS  PubMed  Google Scholar 

  76. Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barajas-López Jde D, Kremnev D, Shaikhali J et al (2013) PAPP5 is involved in the tetrapyrrole mediated plastid signalling during chloroplast development. PLoS One 8:e60305

    Article  PubMed  CAS  Google Scholar 

  78. Pruzinská A, Tanner G, Aubry S et al (2005) Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol 139:52–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Greenberg JT, Guo A, Klessig DF et al (1994) Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77:551–563

    Article  CAS  PubMed  Google Scholar 

  80. Mène-Saffrané L, Dubugnon L, Chételat A et al (2009) Nonenzymatic oxidation of trienoic fatty acids contributes to reactive oxygen species management in Arabidopsis. J Biol Chem 284:1702–1708

    Article  PubMed  CAS  Google Scholar 

  81. Kaminaka H, Näke C, Epple P et al (2006) bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection. EMBO J 25:4400–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Coll NS, Vercammen D, Smidler A et al (2010) Arabidopsis type I metacaspases control cell death. Science 330:1393–1397

    Article  CAS  PubMed  Google Scholar 

  83. Yu I-C, Parker J, Bent AF (1998) Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc Natl Acad Sci U S A 95:7819–7824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Clough SJ, Fengler KA, Yu IC et al (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci U S A 97:9323–9328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Genger RK, Jurkowski GI, McDowell JM et al (2008) Signaling pathways that regulate the enhanced disease resistance of Arabidopsisdefense, no death” mutants. Mol Plant-Microbe Interact 21:1285–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yu I, Fengler KA, Clough SJ et al (2000) Identification of Arabidopsis mutants exhibiting an altered hypersensitive response in gene-for-gene disease resistance. Mol Plant-Microbe Interact 13:277–286

    Article  CAS  PubMed  Google Scholar 

  87. Jurkowski GI, Smith RK, Yu I et al (2004) Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the “defense, no death” phenotype. Mol Plant-Microbe Interact 17:511–520

    Article  CAS  PubMed  Google Scholar 

  88. Collins NC, Thordal-Christensen H, Lipka V et al (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    Article  CAS  PubMed  Google Scholar 

  89. Johansson ON, Fantozzi E, Fahlberg P et al (2014) Role of the penetration-resistance genes PEN1, PEN2 and PEN3 in the hypersensitive response and race-specific resistance in Arabidopsis thaliana. Plant J 79:466–476

    Article  CAS  PubMed  Google Scholar 

  90. Lipka V, Dittgen J, Bednarek P et al (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180–1183

    Article  CAS  PubMed  Google Scholar 

  91. Kobae Y, Sekino T, Yoshioka H et al (2006) Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 47:309–318

    Article  CAS  PubMed  Google Scholar 

  92. Cheng YT, Li Y, Huang S et al (2011) Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation. Proc Natl Acad Sci U S A 108:14694–14699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dong OX, Tong M, Bonardi V et al (2016) TNL-mediated immunity in Arabidopsis requires complex regulation of the redundant ADR1 gene family. New Phytol 210:960–973

    Article  CAS  PubMed  Google Scholar 

  94. Takahashi A, Casais C, Ichimura K et al (2003) HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci U S A 100:11777–11782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hubert DA, Tornero P, Belkhadir Y et al (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J 22:5679–5689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hubert DA, He Y, McNulty BC et al (2009) Specific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation. Proc Natl Acad Sci 106:9556–9563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Palma K, Zhang Y, Li X (2005) An importin α homolog, MOS6, plays an important role in plant innate immunity. Curr Biol 15:1129–1135

    Article  CAS  PubMed  Google Scholar 

  98. Gu Y, Zebell SG, Liang Z et al (2016) Nuclear pore permeabilization is a convergent signaling event in effector-triggered immunity. Cell 166:1–13

    Article  CAS  Google Scholar 

  99. Cheng YT, Germain H, Wiermer M et al (2009) Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators in Arabidopsis. Plant Cell 21:2503–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang Y, Li X (2005) A putative nucleoporin 96 is required for both basal defense and constitutive resistance responses mediated by suppressor of npr1-1, constitutive 1. Plant Cell 17:1306–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tornero P, Merritt P, Sadanandom A et al (2002) RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed. Plant Cell 14:1005–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gloggnitzer J, Akimcheva S, Srinivasan A et al (2014) Nonsense-mediated mRNA decay modulates immune receptor levels to regulate plant antibacterial defense. Cell Host Microbe 16:376–390

    Article  CAS  PubMed  Google Scholar 

  103. Li Y, Li S, Bi D et al (2010) SRFR1 negatively regulates plant NB-LRR resistance protein accumulation to prevent autoimmunity. PLoS Pathog 6:e1001111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Gray WM, Muskett PR, Chuang H-W et al (2003) Arabidopsis SGT1b is required for SCF TIR1-mediated auxin response. Plant Cell 15:1310–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kim SH, Gao F, Bhattacharjee S et al (2010) The Arabidopsis resistance-like gene SNC1 is activated by mutations in SRFR1 and contributes to resistance to the bacterial effector AvrRps4. PLoS Pathog 6:e1001172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Bohmert K, Camus I, Bellini C et al (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17:170–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Arribas-Hernández L, Marchais A, Poulsen C et al (2016) The slicer activity of ARGONAUTE1 is required specifically for the phasing, not production, of trans-acting short interfering RNAs in Arabidopsis. Plant Cell 28:1563–1580

    PubMed  PubMed Central  Google Scholar 

  108. Morel J, Godon C, Mourrain P et al (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14:629–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mason GA, Vergara TL, Queitsch C (2016) The mechanistic underpinnings of an ago1-mediated, environmentally-dependent, and stochastic phenotype. Plant Physiol 170:2420–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lam P, Zhao L, Eveleigh N et al (2015) The exosome and trans-acting small interfering RNAs regulate cuticular wax biosynthesis during Arabidopsis inflorescence stem development. Plant Physiol 167:323–336

    Article  CAS  PubMed  Google Scholar 

  112. Lobbes D, Rallapalli G, Schmidt DD et al (2006) SERRATE: a new player on the plant microRNA scene. EMBO Rep 7:1052–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Takeda A, Iwasaki S, Watanabe T et al (2008) The mechanism selecting the guide strand from small RNA duplexes is different among Argonaute proteins. Plant Cell Physiol 49:493–500

    Article  CAS  PubMed  Google Scholar 

  114. Oliver C, Santos JL, Pradillo M (2014) On the role of some ARGONAUTE proteins in meiosis and DNA repair in Arabidopsis thaliana. Front Plant Sci 5:1–10

    Article  Google Scholar 

  115. Mi S, Cai T, Hu Y et al (2008) Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5´ terminal nucleotide. Cell 133:116–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wei W, Ba Z, Gao M et al (2012) A role for small RNAs in DNA double-strand break repair. Cell 149:101–112

    Article  CAS  PubMed  Google Scholar 

  117. Agorio A, Vera P (2007) ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell 19:3778–3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Strickler SR, Tantikanjana T, Nasrallah JB (2013) Regulation of the S-locus receptor kinase and self-incompatibility in Arabidopsis thaliana. Genes Genomes Genet 3:315–322

    CAS  Google Scholar 

  119. Hernández-Lagana E, Rodríguez-Leal D, Lúa J et al (2016) A multigenic network of ARGONAUTE4 clade members controls early megaspore formation in Arabidopsis. Genetics 204:1045–1056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Katiyar-Agarwal S, Gao S, Vivian-Smith A et al (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21:3123–3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Harvey JJW, Lewsey MG, Patel K et al (2011) An antiviral defense role of AGO2 in plants. PLoS One 6:e14639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Havecker ER, Wallbridge LM, Fedito P et al (2012) Metastable differentially methylated regions within Arabidopsis inbred populations are associated with modified expression of non-coding transcripts. PLoS One 7:e45242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tucker MR, Okada T, Hu Y et al (2012) Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis. Development 139:1399–1404

    Article  CAS  PubMed  Google Scholar 

  124. Zheng X, Zhu J, Kapoor A et al (2007) Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J 26:1691–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Smith LM, Pontes O, Searle I et al (2007) An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell 19:1507–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hunter C, Sun H, Poethig RS et al (2003) The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr Biol 13:1734–1739

    Article  CAS  PubMed  Google Scholar 

  127. Peragine A, Yoshikawa M, Wu G et al (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18:2368–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vazquez F, Vaucheret H, Rajagopalan R et al (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16:69–79

    Article  CAS  PubMed  Google Scholar 

  129. Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M et al (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Arribas-Hernández L, Kielpinski LJ, Brodersen P (2016) mRNA decay of most Arabidopsis miRNA targets requires slicer activity of AGO1. Plant Physiol 171:2620–2632

    PubMed  PubMed Central  Google Scholar 

  131. Elmayan T, Proux F, Vaucheret H (2005) Arabidopsis RPA2: a genetic link among transcriptional gene silencing, DNA repair, and DNA replication. Curr Biol 15:1919–1925

    Article  CAS  PubMed  Google Scholar 

  132. Zhang X, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  133. Xue W, Ruprecht C, Street N et al (2012) Paramutation-like interaction of T-DNA loci in Arabidopsis. PLoS One 7:e51651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Moissiard G, Bischof S, Husmann D et al (2014) Transcriptional gene silencing by Arabidopsis microrchidia homologues involves the formation of heteromers. Proc Natl Acad Sci U S A 111:7474–7479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jacobsen SE, Running MP, Meyerowitz EM (1999) Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126:5231–5243

    CAS  PubMed  Google Scholar 

  136. Ye R, Chen Z, Lian B et al (2016) A dicer-independent route for biogenesis of siRNAs that direct DNA methylation in Arabidopsis. Mol Cell 61:222–235

    Article  CAS  PubMed  Google Scholar 

  137. Xie Z, Johansen LK, Gustafson AM et al (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:642–652

    Article  CAS  Google Scholar 

  138. Mlotshwa S, Pruss GJ, Peragine A et al (2008) DICER-LIKE2 plays a primary role in transitive silencing of transgenes in Arabidopsis. PLoS One 3:e1755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Mlotshwa S, Pruss GJ, Gao Z et al (2010) Transcriptional silencing induced by Arabidopsis T-DNA mutants is associated with 35S promoter siRNAs and requires genes involved in siRNA-mediated chromatin silencing. Plant J 64:699–704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Yoshikawa M, Peragine A, Park MY et al (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yamamuro C, Miki D, Zheng Z et al (2014) Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation. Nat Commun 5:4062

    Article  CAS  PubMed  Google Scholar 

  142. Schoft VK, Chumak N, Choi Y et al (2011) Function of the DEMETER DNA glycosylase in the Arabidopsis thaliana male gametophyte. Proc Natl Acad Sci U S A 108:8042–8047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Adenot X, Elmayan T, Lauressergues D et al (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16:927–932

    Article  CAS  PubMed  Google Scholar 

  144. Chan SWL, Henderson IR, Zhang X et al (2006) RNAi, DRD1, and histone methylation actively target developmentally important non-CG DNA methylation in Arabidopsis. PLoS Genet 2:e83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Vazquez F, Gasciolli V, Crété P et al (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351

    Article  CAS  PubMed  Google Scholar 

  146. Zhong S-H, Liu J-Z, Jin H et al (2013) Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabidopsis. Proc Natl Acad Sci U S A 110:9171–9176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Saze H, Mittelsten Scheid O, Paszkowski J (2003) Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet 34:65–69

    Article  CAS  PubMed  Google Scholar 

  148. Habu Y, Mathieu O, Tariq M et al (2006) Epigenetic regulation of transcription in intermediate heterochromatin. EMBO Rep 7:1279–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kang HG, Oh CS, Sato M et al (2010) Endosome-associated CRT1 functions early in Resistance gene-mediated defense signaling in Arabidopsis and tobacco. Plant Cell 22:918–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Herr AJ, Jensen MB, Dalmay T et al (2005) RNA polymerase IV directs silencing of endogenous DNA. Science 308:118–120

    Article  CAS  PubMed  Google Scholar 

  151. Vu TM, Nakamura M, Calarco JP et al (2013) RNA-directed DNA methylation regulates parental genomic imprinting at several loci in Arabidopsis. Development 140:2953–2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Pontier D, Yahubyan G, Vega D et al (2005) Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev 19:2030–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mourrain P, Béclin C, Elmayan T et al (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533–542

    Article  CAS  PubMed  Google Scholar 

  154. Penterman J, Zilberman D, Huh JH et al (2007) DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci U S A 104:6752–6757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hernandez-Pinzon I, Yelina NE, Schwach F et al (2007) SDE5, the putative homologue of a human mRNA export factor, is required for transgene silencing and accumulation of trans-acting endogenous siRNA. Plant J 50:140–148

    Article  CAS  PubMed  Google Scholar 

  156. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410

    Article  CAS  PubMed  Google Scholar 

  158. Neff MM, Neff JD, Chory J et al (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392

    Article  CAS  PubMed  Google Scholar 

  159. Takahashi H, Miller J, Nozaki Y et al (2002) RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J 32:655–667

    Article  CAS  PubMed  Google Scholar 

  160. Takahashi H, Kanayama Y, Zheng MS et al (2004) Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus. Plant Cell Physiol 45:803–809

    Article  CAS  PubMed  Google Scholar 

  161. Takahashi H, Kai A, Yamashita M et al (2012) Cyclic nucleotide-gated ion channel-mediated cell death may not be critical for R gene-conferred resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiol Mol Plant Pathol 79:40–48

    Article  CAS  Google Scholar 

  162. Ando S, Obinata A, Takahashi H (2014) WRKY70 interacting with RCY1 disease resistance protein is required for resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiol Mol Plant Pathol 85:8–14

    Article  CAS  Google Scholar 

  163. Sekine K, Kawakami S, Hase S et al (2008) High level expression of a virus resistance gene, RCY1, confers extreme resistance to Cucumber mosaic virus in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:1398–1407

    Article  CAS  PubMed  Google Scholar 

  164. Koiwa H, Barb AW, Xiong L et al (2002) C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development. Proc Natl Acad Sci U S A 99:10893–13898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sekine K-T, Ishihara T, Hase S et al (2006) Single amino acid alterations in Arabidopsis thaliana RCY1 compromise resistance to Cucumber mosaic virus, but differentially suppress hypersensitive response-like cell death. Plant Mol Biol 62:669–682

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants for JSPS Research Fellows (15J01964), for “Scientific Research on Innovative Areas” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (Grant numbers: 16H06429, 16K21723, and 16H06435), and by the Japan Society for the Promotion of Science (JSPS) through the JSPS Core-to-Core Program (Advanced Research Networks) entitled “Establishment of International Agricultural Immunology Research-Core for Quantum Improvement in Food Safety.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sato, Y., Takahashi, H. (2019). Reverse Genetic Analysis of Antiviral Resistance Signaling and the Resistance Mechanism in Arabidopsis thaliana. In: Kobayashi, K., Nishiguchi, M. (eds) Antiviral Resistance in Plants. Methods in Molecular Biology, vol 2028. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9635-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9635-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9634-6

  • Online ISBN: 978-1-4939-9635-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics