Skip to main content

Differentiation of Urothelium from Mouse Embryonic Stem Cells in Chemically Defined Conditions

  • Protocol
  • First Online:
Book cover Progenitor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2029))

Abstract

The urothelium of the bladder and urethra are derived from the definitive endoderm during development. Cellular signaling molecules important to the developmental specification of the urothelium are also implicated in the dysregulation of the tissue repair mechanism characteristic of bladder disease. Hence, a complete understanding of the regulation of urothelium development is central to understanding the processes of bladder disease, and in development of simple chemically defined methods for use in regenerative medicine. Key to this is a suitable in vitro model that readily allows for the prosecution of biologically pertinent questions. Here a method for differentiating urothelium from mouse embryonic stem cells in chemically defined conditions is described. The method includes a description of flow cytometry and RT-PCR analysis of definitive endoderm markers Cxcr4, c-Kit, and FoxA2, and of terminally differentiated urothelial cell markers Upk1b and Upk2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hicks RM (1975) The mammalian urinary bladder: an accommodating organ. Biol Rev 50:215–246

    Article  CAS  Google Scholar 

  2. Hicks RM, Ketterer B, Warren RC (1974) The ultrastructure and chemistry of the luminal plasma membrane of the mammalian urinary bladder: a structure with low permeability to water and ions. Philos Trans R Soc Lond Ser B Biol Sci 268:23–38

    Article  CAS  Google Scholar 

  3. Visnjar T, Kocbeck P, Kreft ME (2012) Hyperplasia as a mechanism for rapid resealing urothelial injuries and maintaining high transepithelial resistance. Histochem Cell Biol 137:177–186

    Article  CAS  Google Scholar 

  4. Sun TT, Zhao H, Provet J, Aebi U, Wu XR (1996) Formation of asymmetric unit membrane during urothelial differentiation. Mol Biol Rep 23:3–11

    Article  CAS  Google Scholar 

  5. Wu XR, Kong XP, Pellicer A, Kreibech G, Sun TT (2009) Uroplakins in urothelial biology, function and disease. Kidney Int 75:1153–1165

    Article  CAS  Google Scholar 

  6. Colopy SA, Bjorling DE, Mulligan WA, Bushman W (2014) A population of progenitor cells in the basal and intermediate layers of the murine bladder urothelium contributes to urothelial development and regeneration. Dev Dyn 243:988–998

    Article  CAS  Google Scholar 

  7. Wang C, Ross WT, Myosorekar IU (2017) Urothelial generation and regeneration in development, injury and cancer. Dev Dyn 246:336–343

    Article  Google Scholar 

  8. Mysorekar IU, Mulvey MA, Hultgren SJ, Gordon JI (2002) Molecular regulation of urothelial renewal and host defenses during infection with uropathogenic Escherichia coli. J Biol Chem 277:7412–7419

    Article  CAS  Google Scholar 

  9. Dasgupta J, Tincello DG (2009) Interstitial cystitis/bladder pain syndrome: an update. Maturitas 64:212–217

    Article  Google Scholar 

  10. Kaufman DS, Shipley WU, Feldman AS (2009) Bladder cancer. Lancet 374:239–249

    Article  CAS  Google Scholar 

  11. Keller J, Chiou H-Y, Lin H-C (2013) Increased risk of bladder cancer following diagnosis with bladder pain syndrome/interstitial cystitis. Neurourol Urodyn 32:58–62

    Article  Google Scholar 

  12. Khandelwal P, Abraham SN, Apodaca G (2009) Cell biology and physiology of the uroepithelium. Am J Physiol Renal Physiol 297:F1477–F1501

    Article  CAS  Google Scholar 

  13. Boumelhem BB, Assinder SJ, Hammans C, Tanudiastro MP, Le DTM, Brigden KWL, Fraser ST (2017) The mesendoderm: a wellspring of cell lineages for regenerative medicine. In: Frontiers in stem cell and regenerative medicine research, vol 4. Bentham Science Publishers, Sharjah, pp 3–67

    Google Scholar 

  14. Gupta A, Bischoff A, Peña A et al (2014) The great divide: septation and malformation of the cloaca, and its implications for surgeons. Pediatr Surg Int 30:1089–1095

    Article  Google Scholar 

  15. Marker PC, Donjacour AA, Dahiya R et al (2003a) Hormonal, cellular, and molecular control of prostatic development. Dev Biol 253:165–174

    Article  CAS  Google Scholar 

  16. Cao M, Liu B, Cunha G et al (2008) Urothelium patterns bladder smooth muscle location. Pediatr Res 64:352–357

    Article  Google Scholar 

  17. Haraguchi R, Motoyama J, Sasaki H, Satoh Y, Miyagawa S, Nakagata N, Moon A, Yamada G (2007) Molecular analysis of coordinated bladder and urogenital organ formation by hedgehog signalling. Development 134:525–533

    Article  CAS  Google Scholar 

  18. Cunha GR, Fujii H, Neubauer BL et al (1983) Epithelial-mesenchymal interaction in prostatic development. I. Morphological observations of prostatic induction by urogenital sinus mesenchyme in epithelium of the adult rodent urinary bladder. J Cell Biol 96:1662–1670

    Article  CAS  Google Scholar 

  19. Chung LW, Cunha GR (1983) Stromal-epithelial interactions: II. Regulation of prostatic growth by embryonic urogenital sinus mesenchyme. Prostate 4:503–511

    Article  CAS  Google Scholar 

  20. Tanaka ST, Ishii K, Demarco RT et al (2010) Endodermal origin of bladder trigone inferred from mesenchymal-epithelial interaction. J Urol 183:386–391

    Article  Google Scholar 

  21. Li W, Cavasotto CN, Cardozo T et al (2005) Androgen receptor mutations identified in prostate cancer and androgen insensitivity syndrome display aberrant ART-27 coactivator function. Mol Endocrinol 19:2273–2282

    Article  CAS  Google Scholar 

  22. Wu X-R, Kong X-P, Pellicer A et al (2009) Uroplakins in urothelial biology, function, and disease. Kidney Int 75:1153–1165

    Article  CAS  Google Scholar 

  23. Moll R, Wu XR, Lin JH et al (1995) Uroplakins, specific membrane proteins of urothelial umbrella cells, as histological markers of metastatic transitional cell carcinomas. Am J Pathol 147:1383–1397

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mauney JR, Ramachandran A, Yu RN et al (2010) All-trans retinoic acid directs urothelial specification of murine embryonic stem cells via GATA4/6 signaling mechanisms. PLoS One 5:e11513

    Article  Google Scholar 

  25. Kang M, Kim H, Han Y-M (2014) Generation of bladder urothelium from human pluripotent stem cells under chemically defined serum- and feeder-free system. Int J Mol Sci 15:7139–7157

    Article  Google Scholar 

  26. Osborn SL, Thangappan R, Luria A et al (2014) Induction of human embryonic and induced pluripotent stem cells into urothelium. Stem Cells Transl Med 3:610–619

    Article  CAS  Google Scholar 

  27. Soprano DR, Teets BW, Soprano KJ (2007) Role of retinoic acid in the differentiation of embryonal carcinoma and embryonic stem cells. Vitam Horm 75:69–95

    Article  CAS  Google Scholar 

  28. Oottamasathien SS, Wang YY, Franco WKK et al (2007) Directed differentiation of embryonic stem cells into bladder tissue. Dev Biol 304:11–11

    Article  Google Scholar 

  29. D'Amour KA, Agulnick AD, Eliazer S (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541

    Article  CAS  Google Scholar 

  30. Christodoulou C, Longmire TA, Shen SS (2011) Mouse ES and iPS cells can form similar definitive endoderm despite differences in imprinted genes. J Clin Invest 121:2313–2325

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Assinder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boumelhem, B.B., Fraser, S.T., Assinder, S.J. (2019). Differentiation of Urothelium from Mouse Embryonic Stem Cells in Chemically Defined Conditions. In: Joglekar, M., Hardikar, A. (eds) Progenitor Cells. Methods in Molecular Biology, vol 2029. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9631-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9631-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9630-8

  • Online ISBN: 978-1-4939-9631-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics