Skip to main content

Inkjet-Printed Colorimetric Paper-Based Gas Sensor Arrays for the Discrimination of Volatile Primary Amines with Amine-Responsive Dye-Encapsulating Polymer Nanoparticles

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2027))

Abstract

Arrays of gas sensors are of high interest for “electronic nose” applications. Here, we describe the fabrication of a colorimetric single-use gas sensor array made of paper allowing the discrimination of volatile primary amines based on their polarity. For this purpose, polymeric nanoparticles with different polarities containing an amine-sensitive chromogenic dye are deposited onto paper substrates by means of inkjet printing. Data processing is conducted by red-green-blue (RGB) color extraction, followed by principal component analysis (PCA) or agglomerative hierarchical clustering (AHC) analysis. The application to the discrimination of two cheese samples is demonstrated.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Askim JR, Mahmoudi M, Suslick KS (2013) Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem Soc Rev 42(22):8649–8682

    Article  CAS  PubMed  Google Scholar 

  2. Rakow NA, Suslick KS (2000) A colorimetric sensor array for odour visualization. Nature 406:710–713

    Article  CAS  PubMed  Google Scholar 

  3. Janzen MC, Ponder JB, Bailey DP, Ingison CK, Suslick KS (2006) Colorimetric sensor arrays for volatile organic compounds. Anal Chem 78(11):3591–3600

    Article  CAS  PubMed  Google Scholar 

  4. Bang JH, Lim SH, Park E, Suslick KS (2008) Chemically responsive nanoporous pigments: colorimetric sensor arrays and the identification of aliphatic amines. Langmuir 24(22):13168–13172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feng L, Musto CJ, Kemling JW, Lim SH, Suslick KS (2010) A colorimetric sensor array for identification of toxic gases below permissible exposure limits. Chem Commun 46(12):2037–2039

    Article  CAS  Google Scholar 

  6. Soga T, Jimbo Y, Suzuki K, Citterio D (2013) Inkjet-printed paper-based colorimetric sensor array for the discrimination of volatile primary amines. Anal Chem 85(19):8973–8978

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Hou C, Huo D, Yang M, Fa H-b, Yang P (2014) Development of a colorimetric sensor Array for the discrimination of aldehydes. Sensors Actuators B Chem 196:10–17

    Article  CAS  Google Scholar 

  8. Zhou X, Lee S, Xu Z, Yoon J (2015) Recent progress on the development of chemosensors for gases. Chem Rev 115(15):7944–8000

    Article  CAS  PubMed  Google Scholar 

  9. Ko HJ, Park TH (2016) Bioelectronic nose and its application to smell visualization. J Biol Eng 10(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen Y, Fu G, Zilberman Y, Ruan W, Ameri SK, Zhang YS, Miller E, Sonkusale SR (2017) Low cost smart phone diagnostics for food using paper-based colorimetric sensor arrays. Food Control 82:227–232

    Article  CAS  Google Scholar 

  11. López-Marzo AM, Merkoçi A (2016) Paper based sensors and assays: a success of the engineering design and the convergence of knowledge areas. Lab Chip 16(17):3150–3176

    Article  PubMed  Google Scholar 

  12. Yang Y, Noviana E, Nguyen MP, Geiss BJ, Dandy DS, Henry CS (2017) Paper-based microfluidic devices: emerging themes and applications. Anal Chem 89(1):71–91

    Article  CAS  PubMed  Google Scholar 

  13. Gong MM, Sinton D (2017) Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem Rev 117(12):8447–8480

    Article  CAS  PubMed  Google Scholar 

  14. Yamada K, Shibata H, Suzuki K, Citterio D (2017) Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip 17(7):1206–1249

    Article  CAS  PubMed  Google Scholar 

  15. Yamada K, Henares TG, Suzuki K, Citterio D (2015) Paper-based inkjet-printed microfluidic analytical devices. Angew Chem Int Ed 54(18):5294–5310

    Article  CAS  Google Scholar 

  16. Mohr GJ, Demuth C, Spichiger-Keller UE (1998) Application of chromogenic and fluorogenic reactands in the optical sensing of dissolved aliphatic amines. Anal Chem 70(18):3868–3873

    Article  CAS  Google Scholar 

  17. Mohr G, Spichiger U (1999) Reversible chemical reactions as the basis for optical sensors used to detect amines, alcohols and humidity. J Mater Chem 9(9):2259–2264

    Article  CAS  Google Scholar 

  18. Mohr GJ, Nezel T, Spichiger-Keller UE (2000) Effect of the polymer matrix on the response of optical sensors for dissolved aliphatic amines based on the chromoreactand ETH T 4001. Anal Chim Acta 414(1):181–187

    Article  CAS  Google Scholar 

  19. Korent ŠM, Lobnik A, Mohr GJ (2007) Sol-gel-based optical sensor for the detection of aqueous amines. Anal Bioanal Chem 387(8):2863–2870

    Article  CAS  PubMed  Google Scholar 

  20. Comes M, Marcos MD, Martínez-Máñez R, Sancenón F, Villaescusa LA, Graefe A, Mohr GJ (2008) Hybrid functionalised mesoporous silica–polymer composites for enhanced analyte monitoring using optical sensors. J Mater Chem 18(47):5815–5823

    Article  CAS  Google Scholar 

  21. Borisov SM, Mayr T, Klimant I (2008) Poly (styrene-block-vinylpyrrolidone) beads as a versatile material for simple fabrication of optical nanosensors. Anal Chem 80(3):573–582

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Citterio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shibata, H., Ikeda, Y., Citterio, D. (2019). Inkjet-Printed Colorimetric Paper-Based Gas Sensor Arrays for the Discrimination of Volatile Primary Amines with Amine-Responsive Dye-Encapsulating Polymer Nanoparticles. In: Fitzgerald, J., Fenniri, H. (eds) Biomimetic Sensing. Methods in Molecular Biology, vol 2027. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9616-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9616-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9615-5

  • Online ISBN: 978-1-4939-9616-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics