Skip to main content

Real-Time Sensing with Patterned Plasmonic Substrates and a Compact Imager Chip

  • Protocol
  • First Online:
Biomimetic Sensing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2027))

  • 616 Accesses

Abstract

Optical sensing is an important research field due to its proven ability to be extremely sensitive, nondestructive, and applicable to sensing a wide range of chemical, thermal, electric, or magnetic phenomena. Beyond traditional optical sensors that often rely on bulky setups, plasmonic nanostructures can offer many advantages based on their sensitivity, compact form, cost-effectiveness, multiplexing compatibility, and compatibility with many standard semiconductor nanofabrication techniques. In particular, plasmon-enhanced optical transmission through arrays of nanostructured holes has led to the development of a new generation of optical sensors. In this chapter we present a simple fabrication technique to use plasmonic nanostructures as compact sensors. We position the nanohole array, an LED illumination source, and a spacer layer directly on top of a standard complementary metal–oxide–semiconductor (CMOS) imager chip. This setup is a viable sensor platform in both liquid and gas environments. These devices could operate as low-cost sensors for environmental monitoring, security, food safety, or monitoring small-molecule binding to extract affinity information and binding constants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sia SK, Kricka LJ (2008) Microfluidics and point-of-care testing. Lab Chip 8:1982–1983

    Article  CAS  PubMed  Google Scholar 

  2. Chin CD, Laksanasopin T, Cheung YK, Steinmiller D, Linder V, Parsa H, Wang J, Moore H, Rouse R, Umviligihozo G et al (2011) Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med 17:1015–1019

    Article  CAS  PubMed  Google Scholar 

  3. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensor Actuat B-Chem 54:3

    Article  CAS  Google Scholar 

  4. Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1:515

    Article  CAS  PubMed  Google Scholar 

  5. Whittle CL, Fakharzadeh S, Eades J, Preti G (2007) Human breath odors and their use in diagnosis. Ann N Y Acad Sci 1098:252–266

    Article  CAS  PubMed  Google Scholar 

  6. Biggs KB, Camden JP, Anker JN, Duyne RPV (2009) Surface-enhanced Raman spectroscopy of benzenethiol adsorbed from the gas phase onto silver film over nanosphere surfaces: determination of the sticking probability and detection limit time. J Phys Chem A 113:4581–4586

    Article  CAS  PubMed  Google Scholar 

  7. Stuart DA, Biggs KB, Duyne RPV (2006) Surface-enhanced Raman spectroscopy of half-mustard agent. Analyst 131:568–572

    Article  CAS  PubMed  Google Scholar 

  8. Kahn N, Lavie O, Paz M, Segev Y, Haick H (2015) Dynamic nanoparticle-based flexible sensors: diagnosis of ovarian carcinoma from exhaled breath. Nano Lett 15:7023–7028

    Article  PubMed  Google Scholar 

  9. Hodgkinson J, Tatam RP (2013) Optical gas sensing: a review. Meas Sci Technol 24:012004

    Article  Google Scholar 

  10. Long F, Zhu A, Shi H (2013) Recent advances in optical biosensors for environmental monitoring and early warning. Sensors 13:13928–13,948

    Article  CAS  PubMed  Google Scholar 

  11. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  PubMed  Google Scholar 

  12. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    Article  CAS  PubMed  Google Scholar 

  13. Gordon R, Sinton D, Kavanagh KL, Brolo AG (2008) A new generation of sensors based on extraordinary optical transmission. Acc Chem Res 41:1049–1057

    Article  CAS  PubMed  Google Scholar 

  14. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824

    Article  CAS  PubMed  Google Scholar 

  15. Bingham JM, Anker JN, Kreno LE, Van Duyne RP (2010) Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J Am Chem Soc 132:17358–17359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  17. De Leebeeck A, Kumar LKS, de Lange V, Sinton D, Gordon R, Brolo AG et al (2007) On-chip surface-based detection with nanohole arrays. Anal Chem 79:4094–4100

    Article  PubMed  Google Scholar 

  18. Tetz KA, Pang L, Fainman Y (2006) High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt Lett 31:1528

    Article  PubMed  Google Scholar 

  19. Brolo AG, Gordon R, Leathem B, Kavanaghs KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20:4813–4815

    Article  CAS  PubMed  Google Scholar 

  20. Im H, Lesuffleur A, Lindquist NC, Oh SH (2009) Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing. Anal Chem 81:2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lindquist NC, Lesuffleur A, Im H, Oh SH (2009) Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation. Lab Chip 9:382–387

    Article  CAS  PubMed  Google Scholar 

  22. Lee SH, Lindquist NC, Wittenberg NJ, Jordan LR, Oh S (2012) Real-time full-spectral imaging and affinity measurements from 50 microfluidic channels using nanohole surface plasmon resonance. Lab Chip 12:3882–3890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, Gordon R, Sinton D (2009) Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 81:4308–4311

    Article  CAS  PubMed  Google Scholar 

  24. Escobedo C, Brolo AG, Gordon R, Sinton D (2010) Flow-through vs. flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem 82:10015–10020

    Article  CAS  PubMed  Google Scholar 

  25. Liedberg B, Nylander C, Lundstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sensor Actuator 4:299

    Article  CAS  Google Scholar 

  26. Nylander C, Liedberg B, Lind T (1983) Gas detection by means of surface plasmon resonance. Sensor Actuator 3:79–88

    Article  Google Scholar 

  27. Vukusic P, Bryan-Brown G, Sambles J (1992) Surface plasmon resonance on gratings as a novel means for gas sensing. Sensors Actuat B-Chem 8:155–160

    Article  CAS  Google Scholar 

  28. Miwa S, Arakawa T (1996) Selective gas detection by means of surface plasmon resonance sensors. Thin Solid Films 281:466–468

    Article  Google Scholar 

  29. Notcovich AG, Zhuk V, Lipson S (2000) Surface plasmon resonance phase imaging. Appl Phys Lett 76:1665–1667

    Article  CAS  Google Scholar 

  30. Wright JB, Cicotte KN, Subramania G, Dirk SM, Brener I (2012) Chemoselective gas sensors based on plasmonic nanohole arrays. Opt Mater Express 2:1655–1662

    Article  CAS  Google Scholar 

  31. Chen Y, Lu C (2009) Surface modification on silver nanoparticles for enhancing vapor selectivity of localized surface plasmon resonance sensors. Sensors Actuat B-Chem 135:492–498

    Article  CAS  Google Scholar 

  32. Ma W, Yang H, Wang W, Gao P, Yao J (2011) Ethanol vapor sensing properties of triangular silver nanostructures based on localized surface plasmon resonance. Sensors 11:8643–8653

    Article  CAS  PubMed  Google Scholar 

  33. Seiler ST, Rich IS, Lindquist NC (2016) Direct spectral imaging of plasmonic nanohole arrays for real-time sensing. Nanotechnology 27:184001

    Article  PubMed  Google Scholar 

  34. Lindquist NC, Turner MA, Heppner BP (2014) Template fabricated plasmonic nanoholes on analyte-sensitive substrates for real-time vapor sensing. RSC Adv 4:15115–15,121

    Article  CAS  Google Scholar 

  35. Im H, Lee SH, Wittenberg NJ, Johnson TW, Lindquist NC, Nagpal P, Norris DJ, Oh SH (2011) Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. ACS Nano 5:6244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cetin AE, Coskun AF, Galarreta BC, Huang M, Herman D, Ozcan A, Altug H (2014) Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light-Sci Appl 3:e122

    Article  CAS  Google Scholar 

  37. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358

    Article  CAS  Google Scholar 

  38. Blum P, Mohr GJ, Matern K, Reichert J, Spichiger-Keller UE (2001) Optical alcohol sensor using lipophilic Reichardt’s dyes in polymer membranes. Anal Chim Acta 432:269–275

    Article  CAS  Google Scholar 

  39. Sadaoka Y, Sakai Y, Murata Y (1992) Optical humidity and ammonia gas sensors using Reichardt’s dye-polymer composites. Talanta 39:1675–1679

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Phil Minell and James Myrick (US Enginewing) for collaborative discussion and support. Parts of this research were also supported by the Minnesota Space Grant Consortium (MnSGC), part of the NASA-funded National Space Grant College and Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan C. Lindquist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Seiler, S.T., Rich, I.S., Lindquist, N.C. (2019). Real-Time Sensing with Patterned Plasmonic Substrates and a Compact Imager Chip. In: Fitzgerald, J., Fenniri, H. (eds) Biomimetic Sensing. Methods in Molecular Biology, vol 2027. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9616-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9616-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9615-5

  • Online ISBN: 978-1-4939-9616-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics