Skip to main content

Contact Printing of a Quantum Dot and Polymer Cross-Reactive Array Sensor

  • Protocol
  • First Online:
Biomimetic Sensing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2027))

  • 605 Accesses

Abstract

The incorporation of organic polymeric materials into chemical sensors and electro-optic devices has the potential to greatly advance these fields. A major challenge to their incorporation is the fabrication of thin films due to their intolerance of thermal deposition methods and solvent compatibility challenges. Here, a method for contact printing of quantum dot (QD) and organic polymer (OP) composites for the production of thin-film chemical sensors is described. The method described here allows for the repeatable, low-cost, and relatively simple production of thin films of QD/OP composites for use in chemical sensor arrays by a dry transfer process of the polymer on an elastomer stamp to the sensor substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson AD, Baietto M (2011) Advances in electronic-nose technologies developed for biomedical applications. Sensors 11:1105–1176. https://doi.org/10.3390/s110101105

    Article  CAS  PubMed  Google Scholar 

  2. Arshak K, Moore E, Lyons GM, Harris J, Clifford S (2004) A review of gas sensors employed in electronic nose applications. Sensor Rev 24(2):181–198. https://doi.org/10.1108/02602280410525977

    Article  Google Scholar 

  3. Bright CJ, Nallon EC, Polcha MP, Schnee V (2015) Quantum dot and polymer composite cross-reactive array for chemical vapor detection. Anal Chem 87(24):12270–12275. https://doi.org/10.1021/acs.analchem.5b03559

    Article  CAS  PubMed  Google Scholar 

  4. Schnee VP, Bright CJ, Nallon EC, Polcha MP (2016) Contact printing of a quantum dot and polymer cross-reactive array sensor. Sens Actuat B Chem 236:506–511. https://doi.org/10.1016/j.snb.2016.06.036

    Article  CAS  Google Scholar 

  5. Peveler WJ, Roldan A, Hollingsworth N, Porter MJ, Parkin IP (2016) Multichannel detection and differentiation of explosives with a quantum dot array. ACS Nano 10:1139–1146. https://doi.org/10.1021/acsnano.5b06433

    Article  CAS  PubMed  Google Scholar 

  6. Carlson A, Bowen AM, Huang Y, Nuzzo RG, Rogers JA (2012) Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv Mater 24:5284–5318. https://doi.org/10.1002/adma.201201386

    Article  CAS  PubMed  Google Scholar 

  7. Bodas D, Khan-Malek C (2007) Direct patterning of quantum dots on structured PDMS surface. Sens Actuat B Chem 128:168–172. https://doi.org/10.1016/j.snb.2007.05.043

    Article  CAS  Google Scholar 

  8. Hampton MJ, Templeton TL, DeSimone JM (2010) Direct patterning of CdSe quantum dots into sub-100 nm structures. Langmuir 26:3012–3015. https://doi.org/10.1021/la904787k

    Article  CAS  PubMed  Google Scholar 

  9. Kim L, Anikeeva PO, Coe-Sullivan SA, Steckel JS, Bawendi MG, Bulović V (2008) Contact printing of quantum dot light-emitting devices. Nano Lett 8:4513–4517. https://doi.org/10.1021/nl8025218

    Article  CAS  PubMed  Google Scholar 

  10. Anikeeva PO, Halpert JE, Bawendi MG, Bulović V (2009) Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett 9:2532–2536. https://doi.org/10.1021/nl9002969

    Article  CAS  PubMed  Google Scholar 

  11. Wood V, Panzer MJ, Chen J, Bradley MS, Halpert JE, Bawendi MG, Bulović V (2009) Inkjet-printed quantum dot-polymer composites for full-color AC-driven displays. Adv Mater 21:2151–2155. https://doi.org/10.1002/adma.200803256

    Article  CAS  Google Scholar 

  12. Kim TH, Cho KS, Lee EK, Lee SJ, Chae J, Kim JW et al (2011) Full-colour quantum dot displays fabricated by transfer printing. Nat Photonics 5:176–182. https://doi.org/10.1038/nphoton.2011.12

    Article  CAS  Google Scholar 

  13. Arango AC, Oertel DC, Xu Y, Bawendi MG, Bulović V (2009) Heterojunction photovoltaics using printed colloidal quantum dots as a photosensitive layer. Nano Lett 9(2):860–863. https://doi.org/10.1021/nl803760j

    Article  CAS  PubMed  Google Scholar 

  14. Shallcross RC, Chawla GS, Marikkar FS, Tolbert S, Pyun J, Armstrong NR (2009) Efficient CdSe nanocrystal diffraction gratings prepared by microcontact molding. ACS Nano 3(11):3629–3637. https://doi.org/10.1021/nn900735y

    Article  CAS  PubMed  Google Scholar 

  15. Schmid H, Wolf H, Allenspach R, Riel H, Karg S, Michel B, Delamarche E (2003) Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing. Adv Funct Mater 13:145–153. https://doi.org/10.1002/adfm.200390021

    Article  CAS  Google Scholar 

  16. Yim KH, Zheng Z, Liang Z, Friend RH, Huck WTS, Kim JS (2008) Efficient conjugated-polymer optoelectronic devices fabricated by thin-film transfer-printing technique. Adv Funct Mater 18:1012–1019. https://doi.org/10.1002/adfm.200701321

    Article  CAS  Google Scholar 

  17. Mayer M, Yang J, Gitlin I, Gracias DH, Whitesides GM (2004) Micropatterned agarose gels for stamping arrays of proteins and gradients of proteins. Proteomics 4(8):2366–2376. https://doi.org/10.1002/pmic.200300748

    Article  CAS  PubMed  Google Scholar 

  18. Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123(1):183–184. https://doi.org/10.1021/ja003633m

    Article  CAS  PubMed  Google Scholar 

  19. Nallon EC, Schnee VP, Bright C, Polcha MP, Li Q (2015) Discrimination enhancement with transient feature analysis of a graphene chemical sensor. Anal Chem 88(2):1401–1406. https://doi.org/10.1021/acs.analchem.5b04050

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent P. Schnee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schnee, V.P., Bright, C.J. (2019). Contact Printing of a Quantum Dot and Polymer Cross-Reactive Array Sensor. In: Fitzgerald, J., Fenniri, H. (eds) Biomimetic Sensing. Methods in Molecular Biology, vol 2027. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9616-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9616-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9615-5

  • Online ISBN: 978-1-4939-9616-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics