Skip to main content

A Photochromic Sensor Microchip for High-Performance Multiplex Metal Ion Detection

  • Protocol
  • First Online:
Biomimetic Sensing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2027))

  • 656 Accesses

Abstract

Photochromic molecules can respond to external stimulations and undergo reversible conversion between different chemical structures, providing one photochromic molecule with multiple recognition states for targeting compounds. Here we design a facile sensor microchip with only one photochromic molecule (spirooxazine) to discriminate multiplex metal ions. The sensor chip performs in dark, ultraviolet, or visual stimulation, resulting in different molecular states of spirooxazine-metallic coordination and patterned fluorescent signals for analysis. By using this sensor microchip, 11 metal ions are discriminated. Furthermore, mineral water of 16 different brands and metal ions in human serum are distinguished.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Askim JR, Li Z, LaGasse MK, Rankin JM, Suslick KS (2016) An optoelectronic nose for identification of explosives. Chem Sci 7(1):199–206

    Article  CAS  PubMed  Google Scholar 

  2. Lin H, Jang M, Suslick KS (2011) Preoxidation for colorimetric sensor array detection of VOCs. J Am Chem Soc 133(42):16786–16789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carey JR, Suslick KS, Hulkower KI, Imlay JA, Imlay KRC, Ingison CK, Ponder JB, Sen A, Wittrig AE (2011) Rapid identification of bacteria with a disposable colorimetric sensing array. J Am Chem Soc 133(19):7571–7576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miranda OR, Li X, Garcia-Gonzalez L, Zhu Z-J, Yan B, Bunz UHF, Rotello VM (2011) Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J Am Chem Soc 133(25):9650–9653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bajaj A, Miranda OR, Kim I-B, Phillips RL, Jerry DJ, Bunz UHF, Rotello VM (2009) Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays. Proc Natl Acad Sci U S A 106(27):10912–10916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De M, Rana S, Akpinar H, Miranda OR, Arvizo RR, Bunz UHF, Rotello VM (2009) Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nat Chem 1(6):461–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rana S, Le NDB, Mout R, Saha K, Tonga GY, Bain RES, Miranda OR, Rotello CM, Rotello VM (2015) A multichannel nanosensor for instantaneous readout of cancer drug mechanisms. Nat Nanotechnol 10(1):65–69

    Article  CAS  PubMed  Google Scholar 

  8. Umali AP, LeBoeuf SE, Newberry RW, Kim S, Tran L, Rome WA, Tian T, Taing D, Hong J, Kwan M, Heymann H, Anslyn EV (2011) Discrimination of flavonoids and red wine varietals by arrays of differential peptidic sensors. Chem Sci 2(3):439–445

    Article  CAS  Google Scholar 

  9. Diehl KL, Anslyn EV (2013) Array sensing using optical methods for detection of chemical and biological hazards. Chem Soc Rev 42(22):8596–8611

    Article  CAS  PubMed  Google Scholar 

  10. Minami T, Esipenko NA, Akdeniz A, Zhang B, Isaacs L, Anzenbacher P (2013) Multianalyte sensing of addictive over-the-counter (otc) drugs. J Am Chem Soc 135(40):15238–15243

    Article  CAS  PubMed  Google Scholar 

  11. Minami T, Esipenko NA, Zhang B, Kozelkova ME, Isaacs L, Nishiyabu R, Kubo Y, Anzenbacher P (2012) Supramolecular sensor for cancer-associated nitrosamines. J Am Chem Soc 134(49):20021–20024

    Article  CAS  PubMed  Google Scholar 

  12. Huang Y, Li FY, Qin M, Jiang L, Song YL (2013) A multi-stopband photonic-crystal microchip for high-performance metal-ion recognition based on fluorescent detection. Angew Chem Int Ed 52(28):7296–7299

    Article  CAS  Google Scholar 

  13. Qin M, Huang Y, Li YN, Su M, Chen BD, Sun H, Yong PY, Ye CQ, Li FY, Song YL (2016) A rainbow structural-color chip for multisaccharide recognition. Angew Chem Int Ed 55(24):6911–6914

    Article  CAS  Google Scholar 

  14. Liu Y, Minami T, Nishiyabu R, Wang Z, Anzenbacher P (2013) Sensing of carboxylate drugs in urine by a supramolecular sensor array. J Am Chem Soc 135(20):7705–7712

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X, You L, Anslyn EV, Qian X (2012) Discrimination and classification of ginsenosides and ginsengs using bis-boronic acid receptors in dynamic multicomponent indicator displacement sensor arrays. Chem—Eur J 18(4):1102–1110

    Article  CAS  PubMed  Google Scholar 

  16. Kopelman RA, Snyder SM, Frank NL (2003) Tunable photochromism of spirooxazines via metal coordination. J Am Chem Soc 125(45):13684–13685

    Article  CAS  PubMed  Google Scholar 

  17. Raymo FM, Giordani S (2001) Signal processing at the molecular level. J Am Chem Soc 123(19):4651–4652

    Article  CAS  PubMed  Google Scholar 

  18. Shao N, Jin J, Wang H, Zheng J, Yang R, Chan W, Abliz Z (2009) Design of bis-spiropyran ligands as dipolar molecule receptors and application to in vivo glutathione fluorescent probes. J Am Chem Soc 132(2):725–736

    Article  Google Scholar 

  19. Meng X, Zhu W, Guo Z, Wang J, Tian H (2006) Highly stable and fluorescent switching spirooxazines. Tetrahedron 62(42):9840–9845

    Article  CAS  Google Scholar 

  20. Zhang J, Zou Q, Tian H (2013) Photochromic materials: more than meets the eye. Adv Mater 25(3):378–399

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J, Wang J, Tian H (2014) Taking orders from light: progress in photochromic bio-materials. Mater Horiz 1(2):169–184

    Article  CAS  Google Scholar 

  22. Huang Y, Li FY, Ye CQ, Qin M, Ran W, Song YL (2015) A photochromic sensor microchip for high-performance multiplex metal ions detection. Sci Rep 5:9724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qin M, Huang Y, Li FY, Song YL (2015) Photochromic sensors: a versatile approach for recognition and discrimination. J Mater Chem C 3(36):9265–9275

    Article  CAS  Google Scholar 

  24. Qin M, Li FY, Huang Y, Ran W, Han D, Song YL (2015) Twenty natural amino acids identification by a photochromic sensor chip. Anal Chem 87(2):837–842

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation (Grant Nos. 51203166, 51473172, and 51473173), 973 Program (Nos. 2013CB933004), and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No. XDA09020000). The Chinese Academy of Science is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanlin Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Qin, M., Li, F., Song, Y. (2019). A Photochromic Sensor Microchip for High-Performance Multiplex Metal Ion Detection. In: Fitzgerald, J., Fenniri, H. (eds) Biomimetic Sensing. Methods in Molecular Biology, vol 2027. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9616-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9616-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9615-5

  • Online ISBN: 978-1-4939-9616-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics