Skip to main content

Rapid Detection of Hormonal Involvement in Light Responses

  • Protocol
  • First Online:
Phytochromes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2026))

  • 1137 Accesses

Abstract

Many aspects of light-controlled metabolism and development of plants depend on hormonal pathways. Here, a method is described to identify such hormonal dependence in light-regulated processes. A number of compounds—hormones and chemicals which interfere with hormonal pathways—are listed because of their usefulness in pharmacological treatment experiments. As an example for practical use of such compounds, elongation growth is discussed. An experimental setup is described in which plants are grown so that their structures develop predominantly in a two-dimensional plane. Time-lapse imaging is used to follow the plants in time, and image analysis reveals changes in plant morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Symons GM, Reid JB (2003) Interactions between light and plant hormones during de-etiolation. J Plant Growth Regul 22:3–14

    Article  CAS  Google Scholar 

  2. Brunoud G, Wells DM, Oliva M et al (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103–106

    Article  CAS  Google Scholar 

  3. Yang J, Yuan Z, Meng Q et al (2017) Dynamic regulation of auxin response during rice development revealed by newly established hormone biosensor markers. Front Plant Sci 8:256

    PubMed  PubMed Central  Google Scholar 

  4. Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677

    Article  CAS  Google Scholar 

  5. Vandenbussche F, Petrášek J, Žádníková P et al (2010) The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137:597–606

    Article  CAS  Google Scholar 

  6. Pauwels L, Barbero GF, Geerinck J et al (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    Article  CAS  Google Scholar 

  7. Zhao J, Peng P, Schmitz RJ, Decker AD, Tax FE, Li J (2002) Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiol 130:1221–1229

    Article  CAS  Google Scholar 

  8. Zürcher E, Tavor-Deslex D, Lituiev D, Enkerli K, Tarr PT, Müller B (2013) A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiol 161:1066–1075

    Article  Google Scholar 

  9. Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743

    Article  CAS  Google Scholar 

  10. Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236:331–340

    Article  CAS  Google Scholar 

  11. Lavy M, Estelle M (2016) Mechanisms of auxin signaling. Development 143:3226–3229

    Article  CAS  Google Scholar 

  12. Hedden P, Sponsel V (2015) A century of gibberellin research. J Plant Growth Regul 34:740–760

    Article  CAS  Google Scholar 

  13. Singh AP, Savaldi-Goldstein S (2015) Growth control: brassinosteroid activity gets context. J Exp Bot 66:1123–1132

    Article  CAS  Google Scholar 

  14. Pierik R, Tholen D, Poorter H, Visser EJW, Voesenek L a CJ (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183

    Article  CAS  Google Scholar 

  15. Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13:571–577

    Article  CAS  Google Scholar 

  16. De Paepe A, De Grauwe L, Bertrand S, Smalle J, Van Der Straeten D (2005) The Arabidopsis mutant eer2 has enhanced ethylene responses in the light. J Exp Bot 56:2409–2420

    Article  Google Scholar 

  17. Pérez-Pérez JM, Candela H, Micol JL (2009) Understanding synergy in genetic interactions. Trends Genet 25:368–376

    Article  Google Scholar 

  18. Zhu J, Bailly A, Zwiewka M et al (2016) TWISTED DWARF1 mediates the action of auxin transport inhibitors on actin cytoskeleton dynamics. Plant Cell 28:930–948

    Article  CAS  Google Scholar 

  19. Prigge MJ, Greenham K, Zhang Y, Santner A, Castillejo C, Mutka AM, O’Malley RC, Ecker JR, Kunkel BN, Estelle M (2016) The Arabidopsis auxin receptor F-box proteins AFB4 and AFB5 are required for response to the synthetic auxin picloram. G3 (Bethesda) 6:1383–1390

    Article  CAS  Google Scholar 

  20. Kitahata N, Han S-Y, Noji N et al (2006) A 9-cis-epoxycarotenoid dioxygenase inhibitor for use in the elucidation of abscisic acid action mechanisms. Bioorg Med Chem 14:5555–5561

    Article  CAS  Google Scholar 

  21. Asami T, Min YK, Nagata N, Yamagishi K, Takatsuto S, Fujioka S, Murofushi N, Yamaguchi I, Yoshida S (2000) Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol 123:93–100

    Article  CAS  Google Scholar 

  22. Nagata N, Min YK, Nakano T, Asami T, Yoshida S (2000) Treatment of dark-grown Arabidopsis thaliana with a brassinosteroid-biosynthesis inhibitor, brassinazole, induces some characteristics of light-grown plants. Planta 211:781–790

    Article  CAS  Google Scholar 

  23. De Rybel B, Audenaert D, Vert G et al (2009) Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem Biol 16:594–604

    Article  Google Scholar 

  24. Watanabe T, Fujioka S, Yokota T, Takatsuto S (1998) Synthesis and biological activity of 2,3-diol stereoisomers of 28-homobrassinolide and brassinolide. J Chem Res 0:744–745

    Article  Google Scholar 

  25. Dalziel J, Lawrence D (1984) Biochemical and biological effects of kaurene oxidase inhibitors, such as paclobutrazol. In: Menhenett R, Lawrence DK (eds) Monograph-British Plant Growth Regulation Group. British Plant Growth Regulation Group, Wantage, pp 43–47

    Google Scholar 

  26. Davière J-M, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151

    Article  Google Scholar 

  27. Ito S, Umehara M, Hanada A, Yamaguchi S, Asami T (2013) Effects of strigolactone-biosynthesis inhibitor TIS108 on Arabidopsis. Plant Signal Behav 8:e24193

    Article  Google Scholar 

  28. Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, McCourt P (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741–749

    Article  CAS  Google Scholar 

  29. Vandenbussche F, Vancompernolle B, Rieu I, Ahmad M, Phillips A, Moritz T, Hedden P, Van Der Straeten D (2007) Ethylene-induced Arabidopsis hypocotyl elongation is dependent on but not mediated by gibberellins. J Exp Bot 58:4269–4281

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Vandenbussche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vandenbussche, F. (2019). Rapid Detection of Hormonal Involvement in Light Responses. In: Hiltbrunner, A. (eds) Phytochromes. Methods in Molecular Biology, vol 2026. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9612-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9612-4_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9611-7

  • Online ISBN: 978-1-4939-9612-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics