Skip to main content

A Practical View of the Martini Force Field

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2022))

Abstract

Martini is a coarse-grained (CG) force field suitable for molecular dynamics (MD) simulations of (bio)molecular systems. It is based on mapping of two to four heavy atoms to one CG particle. The effective interactions between the CG particles are parametrized to reproduce partitioning free energies of small chemical compounds between polar and apolar phases. In this chapter, a summary of the key elements of this CG force field is presented, followed by an example of practical application: a lipoplex-membrane fusion experiment. Formulated as hands-on practice, this chapter contains guidelines to build CG models of important biological systems, such as asymmetric bilayers and double-stranded DNA. Finally, a series of notes containing useful information, limitations, and tips are described in the last section.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Marrink SJ, Mark AE (2003) The mechanism of vesicle fusion as revealed by molecular dynamics simulations. J Am Chem Soc 125:11144–11145

    Article  CAS  Google Scholar 

  2. Marrink SJ, Mark AE (2003) Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles. J Am Chem Soc 125:15233–15242

    Article  CAS  Google Scholar 

  3. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760

    Article  CAS  Google Scholar 

  4. Marrink SJ, Risselada J, Mark AE (2005) Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model. Chem Phys Lipids 135:223–244

    Article  CAS  Google Scholar 

  5. Marrink SJ, Jelger Risselada H, Yefimov S et al (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  CAS  Google Scholar 

  6. Risselada HJ, Marrink SJ (2008) The molecular face of lipid rafts in model membranes. Proc Natl Acad Sci U S A 105:17367–17372

    Article  CAS  Google Scholar 

  7. Monticelli L, Kandasamy SK, Periole X et al (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834

    Article  CAS  Google Scholar 

  8. de Jong DH, Singh G, Bennett WFD et al (2013) Improved parameters for the Martini coarse-grained protein force field. J Chem Theory Comput 9:687–697

    Article  Google Scholar 

  9. López CA, Rzepiela AJ, de Vries AH et al (2009) Martini coarse-grained force field: extension to carbohydrates. J Chem Theory Comput 5:3195–3210

    Article  Google Scholar 

  10. López CA, Bellesia G, Redondo A et al (2015) MARTINI coarse-grained model for crystalline cellulose microfibers. J Phys Chem B 119:465–473

    Article  Google Scholar 

  11. Uusitalo JJ, Ingólfsson HI, Akhshi P et al (2015) Martini coarse-grained force field: extension to DNA. J Chem Theory Comput 11:3932–3945

    Article  CAS  Google Scholar 

  12. Uusitalo JJ, Ingólfsson HI, Marrink SJ et al (2017) Martini coarse-grained force field: extension to RNA. Biophys J 113:246–256

    Article  CAS  Google Scholar 

  13. de Jong DH, Liguori N, van den Berg T et al (2015) Atomistic and coarse grain topologies for the cofactors associated with the photosystem II core complex. J Phys Chem B 119:7791–7803

    Article  Google Scholar 

  14. Panizon E, Bochicchio D, Monticelli L et al (2015) MARTINI coarse-grained models of polyethylene and polypropylene. J Phys Chem B 119:8209–8216

    Article  CAS  Google Scholar 

  15. Rossi G, Fuchs PFJ, Barnoud J et al (2012) A coarse-grained MARTINI model of polyethylene glycol and of polyoxyethylene alkyl ether surfactants. J Phys Chem B 116:14353–14362

    Article  CAS  Google Scholar 

  16. Rossi G, Monticelli L, Puisto SR et al (2011) Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case. Soft Matter 7:698–708

    Article  CAS  Google Scholar 

  17. Alessandri R, Uusitalo JJ, de Vries AH et al (2017) Bulk heterojunction morphologies with atomistic resolution from coarse-grain solvent evaporation simulations. J Am Chem Soc 139:3697–3705

    Article  CAS  Google Scholar 

  18. Liu J, Qiu L, Alessandri R et al (2018) Enhancing molecular n-type doping of donor-acceptor copolymers by tailoring side chains. Adv Mater 30(7):1704630

    Article  Google Scholar 

  19. Qiu L, Liu J, Alessandri R et al (2017) Enhancing doping efficiency by improving host-dopant miscibility for fullerene-based n-type thermoelectrics. J Mater Chem A Mater Energy Sustain 5:21234–21241

    Article  CAS  Google Scholar 

  20. Grunewald F, Rossi G, de Vries AH et al (2018) Transferable MARTINI model of poly(ethylene oxide). J Phys Chem B 122:7436–7449

    Article  CAS  Google Scholar 

  21. Monticelli L (2012) On atomistic and coarse-grained models for C60 fullerene. J Chem Theory Comput 8:1370–1378

    Article  CAS  Google Scholar 

  22. Ingolfsson HI, Tieleman P, Marrink S (2015) Lipid organization of the plasma membrane. Biophys J 108:358a

    Article  Google Scholar 

  23. Van Eerden FJ, Melo MN, Frederix PWJM et al (2017) Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex. Nat Commun 8:15214

    Article  Google Scholar 

  24. Baron R, Trzesniak D, de Vries AH et al (2007) Comparison of thermodynamic properties of coarse-grained and atomic-level simulation models. ChemPhysChem 8:452–461

    Article  CAS  Google Scholar 

  25. Shih AY, Arkhipov A, Freddolino PL et al (2006) Coarse grained protein−lipid model with application to lipoprotein particles. J Phys Chem B 110:3674–3684

    Article  CAS  Google Scholar 

  26. Shih AY, Freddolino PL, Arkhipov A et al (2007) Assembly of lipoprotein particles revealed by coarse-grained molecular dynamics simulations. J Struct Biol 157:579–592

    Article  CAS  Google Scholar 

  27. Periole X, Marrink S-J (2013) The Martini coarse-grained force field. Methods Mol Biol 924:533–565

    Article  CAS  Google Scholar 

  28. de Jong DH, Baoukina S, Ingólfsson HI et al (2016) Martini straight: boosting performance using a shorter cutoff and GPUs. Comput Phys Commun 199:1–7

    Article  Google Scholar 

  29. López CA, de Vries AH, Marrink SJ (2013) Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes. Sci Rep 3:2071

    Article  Google Scholar 

  30. Yesylevskyy SO, Schäfer LV, Sengupta D et al (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol 6:e1000810

    Article  Google Scholar 

  31. Michalowsky J, Schäfer LV, Holm C et al (2017) A refined polarizable water model for the coarse-grained MARTINI force field with long-range electrostatic interactions. J Chem Phys 146:054501

    Article  Google Scholar 

  32. Bereau T, Kremer K (2015) Automated parametrization of the coarse-grained Martini force field for small organic molecules. J Chem Theory Comput 11:2783–2791

    Article  CAS  Google Scholar 

  33. Menichetti R, Kanekal KH, Kremer K et al (2017) In silico screening of drug-membrane thermodynamics reveals linear relations between bulk partitioning and the potential of mean force. J Chem Phys 147:125101

    Article  Google Scholar 

  34. Kawabata K, Takakura Y, Hashida M (1995) The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharm Res 12:825–830

    Article  CAS  Google Scholar 

  35. Zhao Y, Huang L (2014) Lipid nanoparticles for gene delivery. Adv Genet 88:13–36

    Article  CAS  Google Scholar 

  36. Ramamoorth M (2015) Non viral vectors in gene therapy - an overview. J Clin Diagn Res 9:Ge01–Ge06

    PubMed  PubMed Central  Google Scholar 

  37. Chira S, Jackson CS, Oprea I et al (2015) Progresses towards safe and efficient gene therapy vectors. Oncotarget 6:30675–30703

    Article  Google Scholar 

  38. Ciani L, Ristori S, Salvati A et al (2004) DOTAP/DOPE and DC-Chol/DOPE lipoplexes for gene delivery: zeta potential measurements and electron spin resonance spectra. Biochim Biophys Acta 1664:70–79

    Article  CAS  Google Scholar 

  39. Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Article  Google Scholar 

  40. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38, 27–28

    Article  CAS  Google Scholar 

  41. Marrink S-J, Mark AE (2004) Molecular view of hexagonal phase formation in phospholipid membranes. Biophys J 87:3894–3900

    Article  CAS  Google Scholar 

  42. Corsi J, Hawtin RW, Ces O et al (2010) DNA lipoplexes: formation of the inverse hexagonal phase observed by coarse-grained molecular dynamics simulation. Langmuir 26:12119–12125

    Article  CAS  Google Scholar 

  43. Wassenaar TA, Ingólfsson HI, Böckmann RA et al (2015) Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11:2144–2155

    Article  CAS  Google Scholar 

  44. Martínez L, Andrade R, Birgin EG et al (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164

    Article  Google Scholar 

  45. Qi Y, Cheng X, Im W (2015) CHARMM-GUI Martini maker for coarse-grained simulations. Biophys J 108:161a

    Article  Google Scholar 

  46. Hsu P-C, Bruininks BMH, Jefferies D et al (2017) CHARMM-GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides. J Comput Chem 38:2354–2363

    Article  CAS  Google Scholar 

  47. Marrink SJ, Periole X, Peter Tieleman D et al (2010) Comment on “On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models” by M. Winger, D. Trzesniak, R. Baron and W. F. van Gunsteren, Phys. Chem. Chem. Phys., 2009, 11, 1934. Phys Chem Chem Phys 12:2254

    Article  CAS  Google Scholar 

  48. Yano Y, Matsuzaki K (2006) Measurement of thermodynamic parameters for hydrophobic mismatch 1: self-association of a transmembrane helix. Biochemistry 45:3370–3378

    Article  CAS  Google Scholar 

  49. Stark AC, Andrews CT, Elcock AH (2013) Toward optimized potential functions for protein-protein interactions in aqueous solutions: osmotic second virial coefficient calculations using the MARTINI coarse-grained force field. J Chem Theory Comput 9:4176–4185

    Article  CAS  Google Scholar 

  50. Javanainen M, Martinez-Seara H, Vattulainen I (2017) Excessive aggregation of membrane proteins in the Martini model. PLoS One 12:e0187936

    Article  Google Scholar 

  51. Schmalhorst PS, Deluweit F, Scherrers R et al (2017) Overcoming the limitations of the MARTINI force field in simulations of polysaccharides. J Chem Theory Comput 13:5039–5053

    Article  CAS  Google Scholar 

  52. Liu B, Åberg C, van Eerden FJ et al (2017) Design and properties of genetically encoded probes for sensing macromolecular crowding. Biophys J 112:1929–1939

    Article  CAS  Google Scholar 

  53. Gu R-X, Ingólfsson HI, de Vries AH et al (2017) Ganglioside-lipid and ganglioside-protein interactions revealed by coarse-grained and atomistic molecular dynamics simulations. J Phys Chem B 121:3262–3275

    Article  CAS  Google Scholar 

  54. Bennett WFD, Peter Tieleman D (2011) Water defect and pore formation in atomistic and coarse-grained lipid membranes: pushing the limits of coarse graining. J Chem Theory Comput 7:2981–2988

    Article  CAS  Google Scholar 

  55. Melo MN, Arnarez C, Sikkema H et al (2017) High-throughput simulations reveal membrane-mediated effects of alcohols on MscL gating. J Am Chem Soc 139:2664–2671

    Article  CAS  Google Scholar 

  56. Periole X, Cavalli M, Marrink S-J et al (2009) Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J Chem Theory Comput 5:2531–2543

    Article  CAS  Google Scholar 

  57. Siuda I, Thøgersen L (2013) Conformational flexibility of the leucine binding protein examined by protein domain coarse-grained molecular dynamics. J Mol Model 19:4931–4945

    Article  CAS  Google Scholar 

  58. Poma AB, Cieplak M, Theodorakis PE (2017) Combining the MARTINI and structure-based coarse-grained approaches for the molecular dynamics studies of conformational transitions in proteins. J Chem Theory Comput 13:1366–1374

    Article  CAS  Google Scholar 

  59. Herzog FA, Braun L, Schoen I et al (2016) Improved side chain dynamics in MARTINI simulations of protein–lipid interfaces. J Chem Theory Comput 12:2446–2458

    Article  CAS  Google Scholar 

  60. Winger M, Trzesniak D, Baron R et al (2009) On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models. Phys Chem Chem Phys 11(12):1934–1941

    CAS  PubMed  Google Scholar 

  61. Baron R, de Vries AH, Hünenberger PH et al (2006) Configurational entropies of lipids in pure and mixed bilayers from atomic-level and coarse-grained molecular dynamics simulations. J Phys Chem B 110:15602–15614

    Article  CAS  Google Scholar 

  62. Ramadurai S, Holt A, Schäfer LV et al (2010) Influence of hydrophobic mismatch and amino acid composition on the lateral diffusion of transmembrane peptides. Biophys J 99:1447–1454

    Article  CAS  Google Scholar 

  63. Periole X, Huber T, Marrink S-J et al (2007) G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc 129:10126–10132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the many people who have directly and indirectly contributed to the development of the Martini force field. In particular Alex de Vries, Helgi I. Ingolfsson, Manuel N. Melo, Tsjerk Wassenaar, Xavier Periole and all the past and present members of the MD group in Groningen, as well as the many users abroad, are acknowledged for their dynamism and enthusiasm in using, criticizing, and improving Martini.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siewert J. Marrink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bruininks, B.M.H., Souza, P.C.T., Marrink, S.J. (2019). A Practical View of the Martini Force Field. In: Bonomi, M., Camilloni, C. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 2022. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9608-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9608-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9607-0

  • Online ISBN: 978-1-4939-9608-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics