Skip to main content

Improvement of RNA Simulations with Torsional Revisions of the AMBER Force Field

  • Protocol
  • First Online:
Book cover Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2022))

Abstract

Our current knowledge on the unique roles of RNA in cells makes it vital to investigate the properties of RNA systems using computational methods because of the potential pharmaceutical applications. With the continuous advancement of computer technology, it is now possible to study RNA folding. Molecular mechanics calculations are useful in discovering the structural and thermodynamic properties of RNA systems. Yet, the predictions depend on the quality of the RNA force field, which is a set of parameters describing the potential energy of the system. Torsional parameters are one of the terms in a force field that can be revised using physics-based approaches. This chapter focuses on improvements provided by revisions of torsional parameters of the AMBER (Assisted Model Building with Energy Refinement) RNA force field. The theory behind torsional revisions and re-parameterization of several RNA torsions is briefly described. Applications of the revised torsional parameters to study RNA nucleosides, single-stranded RNA tetramers, and RNA repeat expansions are described in detail. It is concluded that RNA force fields require constant revisions and should be benchmarked against diverse RNA systems such as single strands and internal loops in order to test their qualities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batey RT, Rambo RP, Doudna JA (1999) Tertiary motifs in RNA structure and folding. Angew Chem Int Ed 38(16):2327–2343

    Article  CAS  Google Scholar 

  2. Bishop JM (1983) Cellular oncogenes and retroviruses. Annu Rev Biochem 52:301–354. https://doi.org/10.1146/annurev.bi.52.070183.001505

    Article  CAS  PubMed  Google Scholar 

  3. Gifford R, Tristem M (2003) The evolution, distribution and diversity of endogenous retroviruses. Virus Genes 26(3):291–316. https://doi.org/10.1023/a:1024455415443

    Article  CAS  PubMed  Google Scholar 

  4. Haller A, Souliere MF, Micura R (2011) The dynamic nature of RNA as Key to understanding riboswitch mechanisms. Acc Chem Res 44(12):1339–1348. https://doi.org/10.1021/ar200035g

    Article  CAS  PubMed  Google Scholar 

  5. Smith AM, Fuchs RT, Grundy FJ, Henkin TM (2010) Riboswitch RNAs Regulation of gene expression by direct monitoring of a physiological signal. RNA Biol 7(1):104–110

    Article  CAS  Google Scholar 

  6. Sabot F, Schulman AH (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity 97(6):381–388. https://doi.org/10.1038/sj.hdy.6800903

    Article  CAS  PubMed  Google Scholar 

  7. Kable ML, Seiwert SD, Heidmann S, Stuart K (1996) RNA editing: a mechanism for gRNA-specified uridylate insertion into precursor mRNA. Science 273(5279):1189–1195. https://doi.org/10.1126/science.273.5279.1189

    Article  CAS  PubMed  Google Scholar 

  8. Hannon GJ (2002) RNA interference. Nature 418(6894):244–251

    Article  CAS  Google Scholar 

  9. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11(2):125–140. https://doi.org/10.1038/nrd3625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Birikh KR, Heaton PA, Eckstein F (1997) The structure, function and application of the hammerhead ribozyme. Eur J Biochem 245(1):1–16. https://doi.org/10.1111/j.1432-1033.1997.t01-3-00001.x

    Article  CAS  PubMed  Google Scholar 

  11. Frank DN, Pace NR (1998) Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu Rev Biochem 67:153–180. https://doi.org/10.1146/annurev.biochem.67.1.153

    Article  CAS  PubMed  Google Scholar 

  12. Cate JH, Gooding AR, Podell E, Zhou KH, Golden BL, Kundrot CE, Cech TR, Doudna JA (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273(5282):1678–1685

    Article  CAS  Google Scholar 

  13. Patel DJ, Suri AK, Jiang F, Jiang LC, Fan P, Kumar RA, Nonin S (1997) Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol 272(5):645–664. https://doi.org/10.1006/jmbi.1997.1281

    Article  CAS  PubMed  Google Scholar 

  14. Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci U S A 100(26):15416–15421. https://doi.org/10.1073/pnas.2136683100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ashley CT, Warren ST (1995) Trinucleotide repeat expansion and human disease. Annu Rev Genet 29:703–728

    Article  CAS  Google Scholar 

  17. Emery AEH (2002) The muscular dystrophies. Lancet 359(9307):687–695

    Article  CAS  Google Scholar 

  18. Greco CM, Berman RF, Martin RM, Tassone F, Schwartz PH, Chang A, Trapp BD, Iwahashi C, Brunberg J, Grigsby J, Hessl D, Becker EJ, Papazian J, Leehey MA, Hagerman RJ, Hagerman PJ (2006) Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain 129:243–255. https://doi.org/10.1093/brain/awh683

    Article  CAS  PubMed  Google Scholar 

  19. Jin P, Duan RH, Qurashi A, Qin YL, Tian DH, Rosser TC, Liu HJ, Feng Y, Warren ST (2007) Pur alpha binds to rCGG repeats and modulates repeat-mediated neurodegeneration in a Drosophila model of fragile X tremor/ataxia syndrome. Neuron 55(4):556–564. https://doi.org/10.1016/j.neuron.2007.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Verheij C, Bakker CE, Degraaff E, Keulemans J, Willemsen R, Verkerk A, Galjaard H, Reuser AJJ, Hoogeveen AT, Oostra BA (1993) Characterization and localization of the FMR-1 gene product associated with fragile X syndrome. Nature 363(6431):722–724

    Article  CAS  Google Scholar 

  21. Verkerk A, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DPA, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP, Eussen BE, Vanommen GJB, Blonden LAJ, Riggins GJ, Chastain JL, Kunst CB, Galjaard H, Caskey CT, Nelson DL, Oostra BA, Warren ST (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65(5):905–914

    Article  CAS  Google Scholar 

  22. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197

    Article  CAS  Google Scholar 

  23. Jr MKAD, Brooks B, Brooks CL III, Nilsson L, Roux B, Won Y, Karplus M (1998) CHARMM: the energy function and its parametrization with an overview of the program. In: Schleyer PR, Allinger NL, Clark T et al (eds) The encyclopedia of computational chemistry, vol 1. John Wiley & Sons, Chichester, pp 271–277

    Google Scholar 

  24. Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103(19):3596–3607

    Article  CAS  Google Scholar 

  25. Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK, Young C, Batson B, Bowers KJ, Chao JC, Eastwood MP, Gagliardo J, Grossman JP, Ho CR, Ierardi DJ, Kolossvary I, Klepeis JL, Layman T, McLeavey C, Moraes MA, Mueller R, Priest EC, Shan YB, Spengler J, Theobald M, Towles B, Wang SC (2008) Anton, a special-purpose machine for molecular dynamics simulation. Commun ACM 51(7):91–97. https://doi.org/10.1145/1364782.1364802

    Article  Google Scholar 

  26. Bartels C, Karplus M (1997) Multidimensional adaptive umbrella sampling: applications to main chain and side chain peptide conformations. J Comput Chem 18(12):1450–1462. https://doi.org/10.1002/(sici)1096-987x(199709)18:12<1450::aid-jcc3>3.0.co;2-i

    Article  CAS  Google Scholar 

  27. Virnau P, Muller M (2004) Calculation of free energy through successive umbrella sampling. J Chem Phys 120(23):10925–10930. https://doi.org/10.1063/1.1739216

    Article  CAS  PubMed  Google Scholar 

  28. Babin V, Roland C, Darden TA, Sagui C (2006) The free energy landscape of small peptides as obtained from metadynamics with umbrella sampling corrections. J Chem Phys 125(20):204909. https://doi.org/10.1063/1.2393236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kastner J (2011) Umbrella sampling. Wiley Interdiscipl Rev Comput Mol Sci 1(6):932–942. https://doi.org/10.1002/wcms.66

    Article  CAS  Google Scholar 

  30. Banavali NK, MacKerell AD (2002) Free energy and structural pathways of base flipping in a DNA GCGC containing sequence. J Mol Biol 319(1):141–160. https://doi.org/10.1016/s0022-2836(02)00194-8

    Article  CAS  PubMed  Google Scholar 

  31. Song K, Campbell AJ, Bergonzo C, de los Santos C, Grollman AP, Simmerling C (2009) An improved reaction coordinate for nucleic acid base flipping studies. J Chem Theory Comput 5(11):3105–3113. https://doi.org/10.1021/ct9001575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hart K, Nystrom B, Ohman M, Nilsson L (2005) Molecular dynamics simulations and free energy calculations of base flipping in dsRNA. RNA 11(5):609–618. https://doi.org/10.1261/rna.7147805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Giudice E, Varnai P, Lavery R (2003) Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. Nucleic Acids Res 31(5):1434–1443. https://doi.org/10.1093/nar/gkg239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yildirim I, Park H, Disney MD, Schatz GC (2013) A dynamic structural model of expanded RNA CAG repeats: a refined X-ray structure and computational investigations using Molecular Dynamics and Umbrella Sampling simulations. J Am Chem Soc 135(9):3528–3538. https://doi.org/10.1021/ja3108627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wales DJ (2002) Discrete path sampling. Mol Phys 100(20):3285–3305. https://doi.org/10.1080/00268970210162691

    Article  CAS  Google Scholar 

  36. Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11(2):224–230. https://doi.org/10.1016/s0959-440x(00)00194-9

    Article  CAS  PubMed  Google Scholar 

  37. Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71(12):126601. https://doi.org/10.1088/0034-4885/71/12/126601

    Article  CAS  Google Scholar 

  38. Schlitter J, Engels M, Kruger P, Jacoby E, Wollmer A (1993) Targeted molecular-dynamics simulation of conformational change - application to the t -- r transition in insulin. Mol Simulat 10(2-6):291. https://doi.org/10.1080/08927029308022170

    Article  CAS  Google Scholar 

  39. Case DA, Betz RM, Cerutti DS, Cheatham TE, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Luchko T, Luo R, Madej B, Mermelstein D, Merz KM, Monard G, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, Kollman PA (2016) AMBER 16. University of California, San Francisco, CA

    Google Scholar 

  40. Nymeyer H, Gnanakaran S, Garcia AE (2004) Atomic simulations of protein folding, using the replica exchange algorithm. Methods Enzymol 383:119

    Article  CAS  Google Scholar 

  41. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120(24):11919–11929. https://doi.org/10.1063/1.1755656

    Article  CAS  PubMed  Google Scholar 

  42. Yildirim I, Kennedy SD, Stern HA, Hart JM, Kierzek R, Turner DH (2012) Revision of AMBER torsional parameters for RNA improves free energy predictions for tetramer duplexes with GC and iGiC base pairs. J Chem Theory Comput 8(1):172–181

    Article  CAS  Google Scholar 

  43. Yildirim I, Stern HA, Tubbs JD, Kennedy SD, Turner DH (2011) Benchmarking AMBER force fields for RNA: comparisons to NMR spectra for single-stranded r(GACC) are improved by revised χ torsions. J Phys Chem B 115(29):9261–9270

    Article  CAS  Google Scholar 

  44. Yildirim I, Stern HA, Kennedy SD, Tubbs JD, Turner DH (2010) Reparameterization of RNA χ torsion parameters for the AMBER force field and comparison to NMR spectra for cytidine and uridine. J Chem Theory Comput 6(5):1520–1531. https://doi.org/10.1021/ct900604a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Banas P, Hollas D, Zgarbova M, Jurecka P, Orozco M, Cheatham TE, Sponer J, Otyepka M (2010) Performance of molecular mechanics force fields for RNA simulations: stability of UUCG and GNRA hairpins. J Chem Theory Comput 6(12):3836–3849. https://doi.org/10.1021/ct100481h

    Article  CAS  Google Scholar 

  46. Zgarbova M, Otyepka M, Sponer J, Mladek A, Banas P, Cheatham TE, Jurecka P (2011) Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J Chem Theory Comput 7(9):2886–2902. https://doi.org/10.1021/ct200162x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ode H, Matsuo Y, Neya S, Hoshino T (2008) Force field parameters for rotation around chi torsion axis in nucleic acids. J Comput Chem 29(15):2531–2542. https://doi.org/10.1002/jcc.21006

    Article  CAS  PubMed  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, PMW G, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. revision C.02 edn. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  49. Wales DJ, Yildirim I (2017) Improving computational predictions of single-stranded RNA tetramers with revised α/γ torsional parameters for the amber force field. J Phys Chem B 121(14):2989–2999

    Article  CAS  Google Scholar 

  50. Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys J 92(11):3817–3829

    Article  CAS  Google Scholar 

  51. Chen AA, Garcia AE (2013) High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations. Proc Natl Acad Sci U S A 110(42):16820–16825. https://doi.org/10.1073/pnas.1309392110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bergonzo C, Cheatham TE (2015) Improved force field parameters lead to a better description of RNA structure. J Chem Theory Comput 11(9):3969–3972. https://doi.org/10.1021/acs.jctc.5b00444

    Article  CAS  PubMed  Google Scholar 

  53. Gil-Ley A, Bottaro S, Bussi G (2016) Empirical corrections to the amber RNA force field with target metadynamics. J Chem Theory Comput 12(6):2790–2798. https://doi.org/10.1021/acs.jctc.6b00299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Deb I, Pal R, Sarzynska J, Lahiri A (2016) Reparameterizations of the chi torsion and Lennard-Jones sigma parameters improve the conformational characteristics of modified uridines. J Comput Chem 37(17):1576–1588. https://doi.org/10.1002/jcc.24374

    Article  CAS  PubMed  Google Scholar 

  55. Aytenfisu AH, Spasic A, Grossfield A, Stern HA, Mathews DH (2017) Revised RNA dihedral parameters for the amber force field improve RNA molecular dynamics. J Chem Theory Comput 13(2):900–915

    Article  CAS  Google Scholar 

  56. Tan D, Piana S, Dirks RM, Shaw DE (2018) RNA force field with accuracy comparable to state-of-the-art protein force fields. Proc Natl Acad Sci U S A 115(7):E1346–E1355. https://doi.org/10.1073/pnas.1713027115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Doornbos J, Wreesmann CTJ, Boom JH, Altona C (1983) Conformational analysis of the single-stranded ribonucleic acid AACC. A one-dimensional and two-dimensional proton NMR study at 500 MHz. Eur J Biochem 131(3):571–579. https://doi.org/10.1111/j.1432-1033.1983.tb07301.x

    Article  CAS  PubMed  Google Scholar 

  58. Isaksson J, Acharya S, Barman J, Cheruku P, Chattopadhyaya J (2004) Single-stranded adenine-rich DNA and RNA retain structural characteristics of their respective double-stranded conformations and show directional differences in stacking pattern. Biochemistry 43(51):15996–16010

    Article  CAS  Google Scholar 

  59. Kierzek E, Pasternak A, Pasternak K, Gdaniec Z, Yildirim I, Turner DH, Kierzek R (2009) Contributions of stacking, preorganization, and hydrogen bonding to the thermodynamic stability of duplexes between RNA and 2′-O-methyl RNA with locked nucleic acids. Biochemistry 48(20):4377–4387. https://doi.org/10.1021/bi9002056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Condon DE, Kennedy SD, Mort BC, Kierzek R, Yildirim I, Turner DH (2015) Stacking in RNA: NMR of four tetramers benchmark molecular dynamics. J Chem Theory Comput 11(6):2729–2742. https://doi.org/10.1021/ct501025q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tubbs JD, Condon DE, Kennedy SD, Hauser M, Bevilacqua PC, Turner DH (2013) NMR of CCCC RNA reveals a right-handed helix and revised parameters for AMBER force field torsions improve structural predictions from molecular dynamics (vol 52, 996, 2013). Biochemistry 52(19):3390–3392. https://doi.org/10.1021/bi400401j

    Article  CAS  PubMed Central  Google Scholar 

  62. Tubbs JD, Condon DE, Kennedy SD, Hauser M, Bevilacqua PC, Turner DH (2013) The nuclear magnetic resonance of CCCC RNA reveals a right-handed helix, and revised parameters for AMBER force field torsions improve structural predictions from molecular dynamics. Biochemistry 52(6):996–1010. https://doi.org/10.1021/bi3010347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wales DJ, Miller MA, Walsh TR (1998) Archetypal energy landscapes. Nature 394(6695):758–760. https://doi.org/10.1038/29487

    Article  CAS  Google Scholar 

  64. Becker OM, Karplus M (1997) The topology of multidimensional potential energy surfaces: theory and application to peptide structure and kinetics. J Chem Phys 106(4):1495–1517. https://doi.org/10.1063/1.473299

    Article  CAS  Google Scholar 

  65. Davies DB (1978) Conformations of nucleosides and nucleotides. Prog Nucl Magn Reson Spectrosc 12:135–225

    Article  CAS  Google Scholar 

  66. Yildirim I, Chakraborty D, Disney MD, Wales DJ, Schatz GC (2015) Computational investigation of RNA CUG repeats responsible for myotonic dystrophy 1. J Chem Theory Comput 11(10):4943–4958. https://doi.org/10.1021/acs.jctc.5b00728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Disney MD, Yildirim I, Childs-Disney JL (2014) Methods to enable the design of bioactive small molecules targeting RNA. Org Biomol Chem 12(7):1029–1039. https://doi.org/10.1039/c3ob42023j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Childs-Disney JL, Yildirim I, Park H, Lohman JR, Guan L, Tran T, Sarkar P, Schatz GC, Disney MD (2014) Structure of the myotonic dystrophy type 2 RNA and designed small molecules that reduce toxicity. ACS Chem Biol 9(2):538–550. https://doi.org/10.1021/cb4007387

    Article  CAS  PubMed  Google Scholar 

  69. Childs-Disney JL, Stepniak-Konieczna E, Tuan T, Yildirim I, Park H, Chen CZ, Hoskins J, Southall N, Marugan JJ, Patnaik S, Zheng W, Austin CP, Schatz GC, Sobczak K, Thornton CA, Disney MD (2013) Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules. Nat Commun 4:2044. https://doi.org/10.1038/ncomms3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I would like to thank the Department of Chemistry and Biochemistry, Florida Atlantic University, for financial support, and Prof. Douglas H. Turner for valuable suggestions while writing this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Yildirim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yildirim, I. (2019). Improvement of RNA Simulations with Torsional Revisions of the AMBER Force Field. In: Bonomi, M., Camilloni, C. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 2022. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9608-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9608-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9607-0

  • Online ISBN: 978-1-4939-9608-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics