Skip to main content

Analyzing and Biasing Simulations with PLUMED

  • Protocol
  • First Online:
Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2022))

Abstract

This chapter discusses how the PLUMED plugin for molecular dynamics can be used to analyze and bias molecular dynamics trajectories. The chapter begins by introducing the notion of a collective variable and by then explaining how the free energy can be computed as a function of one or more collective variables. A number of practical issues mostly around periodic boundary conditions that arise when these types of calculations are performed using PLUMED are then discussed. Later parts of the chapter discuss how PLUMED can be used to perform enhanced sampling simulations that introduce simulation biases or multiple replicas of the system and Monte Carlo exchanges between these replicas. This section is then followed by a discussion on how free-energy surfaces and associated error bars can be extracted from such simulations by using weighted histogram and block averaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D, Raiteri P, Donadio D, Marinelli F, Pietrucci F, Broglia RA et al (2009) PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun 180(10):1961

    Article  CAS  Google Scholar 

  2. Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G (2014) PLUMED 2: new feathers for an old bird. Comput Phys Commun 185(2):604

    Article  CAS  Google Scholar 

  3. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19

    Article  Google Scholar 

  4. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1

    Article  CAS  Google Scholar 

  5. Todorov IT, Smith W, Trachenko K, Dove MT (2006) DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem 16(20):1911

    Article  CAS  Google Scholar 

  6. Hutter J, Iannuzzi M, Schiffmann F, VandeVondele J (2014) CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip Rev Comput Mol Sci 4(1):15

    Article  CAS  Google Scholar 

  7. Case D, Betz R, Cerutti D, Cheatham T III, Darden T, Duke R, Giese T, H. Gohlke AG, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee T, LeGrand S, Li P, Lin C, Luchko T, Luo R, Madej B, Mermelstein D, Merz K, Monard G, Nguyen H, Nguyen H, Omelyan I, Onufriev A, Roe D, Roitberg A, Sagui C, Simmerling C, Botello-Smith W, Swails JM, Walker RC, Wang J, Wolf R, Wu X, Xiao L, Kollman P (2016) AMBER 2016. University of California, San Francisco

    Google Scholar 

  8. Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, Wang LP, Simmonett AC, Harrigan MP, Stern CD et al (2017) OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLOS Comput Biol 13(7):e1005659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Fiorin G, Klein ML, Hénin J (2013) Using collective variables to drive molecular dynamics simulations. Mol Phys 111(22–23):3345

    Article  CAS  Google Scholar 

  10. Sidky H, Colón YJ, Helfferich J, Sikora BJ, Bezik C, Chu W, Giberti F, Guo AZ, Jiang X, Lequieu J et al (2018) SSAGES: software suite for advanced general ensemble simulations. J Chem Phys 148(4):044104

    Article  PubMed  CAS  Google Scholar 

  11. Gil-Ley A, Bussi G (2015) Enhanced conformational sampling using replica exchange with collective-variable tempering. J Chem Theory Comput 11(3):1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Best RB, Hummer G, Eaton WA (2013) Native contacts determine protein folding mechanisms in atomistic simulations. Proc Natl Acad Sci U S A 110(44):17874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Camilloni C, Vendruscolo M (2014) Statistical mechanics of the denatured state of a protein using replica-averaged metadynamics. J Am Chem Soc 136(25):8982

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Voth GA (2011) Combined metadynamics and umbrella sampling method for the calculation of ion permeation free energy profiles. J Chem Theory Comput 7(7):2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Meyer T, Ensing B, Rogge SM, De Clerck K, Meijer EJ, Van Speybroeck V (2016) Acidity constant (pKa) calculation of large solvated dye molecules: evaluation of two advanced molecular dynamics methods. ChemPhysChem 17(21):3447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cheng B, Tribello GA, Ceriotti M (2015) Solid-liquid interfacial free energy out of equilibrium. Phys Rev B 92(18):180102

    Article  CAS  Google Scholar 

  17. Tribello GA, Giberti F, Sosso GC, Salvalaglio M, Parrinello M (2017) Analyzing and driving cluster formation in atomistic simulations. J Chem Theory Comput 13(3):1317

    Article  CAS  PubMed  Google Scholar 

  18. Peters B (2016) Reaction coordinates and mechanistic hypothesis tests. Annu Rev Phys Chem 67:669

    Article  CAS  PubMed  Google Scholar 

  19. Kabsch W (1976) A solution for the best rotation to relate two sets of vectors. Acta Crystallogr A 32(5):922

    Article  Google Scholar 

  20. Vymetal J, Vondrasek J (2011) Gyration-and inertia-tensor-based collective coordinates for metadynamics. application on the conformational behavior of polyalanine peptides and trp-cage folding. J Phys Chem A 115(41):11455

    Article  PubMed  CAS  Google Scholar 

  21. Cunha RA, Bussi G (2017) Unraveling Mg2+–RNA binding with atomistic molecular dynamics. RNA 23(5):628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pietrucci F, Laio A (2009) A collective variable for the efficient exploration of protein beta-sheet structures: application to SH3 and GB1. J Chem Theory Comput 5(9):2197

    Article  CAS  PubMed  Google Scholar 

  23. Bartels C, Karplus M (1998), Probability distributions for complex systems: adaptive umbrella sampling of the potential energy. J Phys Chem B 102(5):865

    Article  CAS  Google Scholar 

  24. Bonomi M, Parrinello M (2010) Enhanced sampling in the well-tempered ensemble. Phys Rev Lett 104(19):190601

    Article  CAS  PubMed  Google Scholar 

  25. Lazaridis T, Karplus M (1999) Effective energy function for proteins in solution. Proteins 35(2):133

    Article  CAS  PubMed  Google Scholar 

  26. Do TN, Carloni P, Varani G, Bussi G (2013) RNA/peptide binding driven by electrostatics – insight from bidirectional pulling simulations. J Chem Theory Comput 9(3):1720

    Article  CAS  PubMed  Google Scholar 

  27. Nava M, Palazzesi F, Perego C, Parrinello M (2017) Dimer metadynamics. J Chem Theory Comput 13(2):425

    Article  CAS  PubMed  Google Scholar 

  28. Bottaro S, Banas P, Sponer J, Bussi G (2016) Free energy landscape of GAGA and UUCG RNA tetraloops. J Phys Chem Lett 7(20):4032

    Article  CAS  PubMed  Google Scholar 

  29. Spiwok V, Lipovová P, Králová B (2007) Metadynamics in essential coordinates: free energy simulation of conformational changes. J Phys Chem B 111(12):3073

    Article  CAS  PubMed  Google Scholar 

  30. Sutto L, D’Abramo M, Gervasio FL (2010) Comparing the efficiency of biased and unbiased molecular dynamics in reconstructing the free energy landscape of met-enkephalin. J Chem Theory Comput 6(12):3640

    Article  CAS  Google Scholar 

  31. Branduardi D, Gervasio FL, Parrinello M (2007) From A to B in free energy space. J Chem Phys 126(5):054103

    Article  CAS  PubMed  Google Scholar 

  32. Leines GD, Ensing B (2012) Path finding on high-dimensional free energy landscapes. Phys Rev Lett 109(2):020601

    Article  CAS  Google Scholar 

  33. Spiwok V, Králová B (2011) Metadynamics in the conformational space nonlinearly dimensionally reduced by isomap. J Chem Phys 135(22):224504

    Article  PubMed  CAS  Google Scholar 

  34. Cremer Dt, Pople J (1975), General definition of ring puckering coordinates. J Am Chem Soc 97(6):1354

    Article  CAS  Google Scholar 

  35. Huang M, Giese TJ, Lee TS, York DM (2014) Improvement of DNA and RNA sugar pucker profiles from semiempirical quantum methods. J Chem Theory Comput 10(4):1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bonomi M, Camilloni C (2017) Integrative structural and dynamical biology with PLUMED-ISDB. Bioinformatics 33(24):3999

    Article  CAS  PubMed  Google Scholar 

  37. Jolliffe I (2002) Principal component analysis. Springer, New York

    Google Scholar 

  38. Borg I, Groenen PJF (2005) Modern multidimensional scaling: theory and applications. Springer, New York

    Google Scholar 

  39. Ceriotti M, Tribello GA, Parrinello M (2011) Simplifying the representation of complex free-energy landscapes using sketch-map. Proc Natl Acad Sci USA 108(32):13023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Giorgino T (2014) PLUMED-GUI: an environment for the interactive development of molecular dynamics analysis and biasing scripts. Comput Phys Commun 185(3):1109

    Article  CAS  Google Scholar 

  41. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33

    Article  CAS  PubMed  Google Scholar 

  42. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23(2):187

    Article  Google Scholar 

  43. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13(8):1011

    Article  CAS  Google Scholar 

  44. Isralewitz B, Izrailev S, Schulten K (1997) Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. Biophys J 73(6):2972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99(20):12562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iannuzzi M, Laio A, Parrinello M (2003) Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics. Phys Rev Lett 90(23):238302

    Article  PubMed  CAS  Google Scholar 

  47. Raiteri P, Laio A, Gervasio FL, Micheletti C, Parrinello M (2006). Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J Phys Chem B 110(8):3533

    Article  CAS  PubMed  Google Scholar 

  48. Bussi G, Gervasio FL, Laio A, Parrinello M (2006) Free-energy landscape for β hairpin folding from combined parallel tempering and metadynamics. J Am Chem Soc 128(41):13435

    Article  CAS  PubMed  Google Scholar 

  49. Piana S, Laio A (2007) A bias-exchange approach to protein folding. J Phys Chem B 111(17):4553

    Article  CAS  PubMed  Google Scholar 

  50. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100(2):020603

    Article  PubMed  CAS  Google Scholar 

  51. Branduardi D, Bussi G, Parrinello M (2012) Metadynamics with adaptive Gaussians. J Chem Theory Comput 8(7):2247

    Article  CAS  PubMed  Google Scholar 

  52. Dama JF, Parrinello M, Voth GA (2014) Well-tempered metadynamics converges asymptotically. Phys Rev Lett 112(24):240602

    Article  PubMed  CAS  Google Scholar 

  53. Dama JF, Rotskoff G, Parrinello M, Voth GA (2014) Transition-tempered metadynamics: robust, convergent metadynamics via on-the-fly transition barrier estimation. J Chem Theory Comput 10(9):3626

    Article  CAS  PubMed  Google Scholar 

  54. Pfaendtner J, Bonomi M (2015) Efficient sampling of high-dimensional free-energy landscapes with parallel bias metadynamics. J Chem Theory Comput 11(11):5062

    Article  CAS  PubMed  Google Scholar 

  55. Hosek P, Toulcova D, Bortolato A, Spiwok V (2016) Altruistic metadynamics: multisystem biased simulation. J Phys Chem B 120(9):2209

    Article  CAS  PubMed  Google Scholar 

  56. Baftizadeh F, Cossio P, Pietrucci F, Laio A (2012) Protein folding and ligand-enzyme binding from bias-exchange metadynamics simulations. Curr Phys Chem 2(1):79

    Article  CAS  Google Scholar 

  57. Tiwary P, Parrinello M (2013) From metadynamics to dynamics. Phys Rev Lett 111(23):230602

    Article  CAS  PubMed  Google Scholar 

  58. Maragliano L, Vanden-Eijnden E (2006) A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem Phys Lett 426:168

    Article  CAS  Google Scholar 

  59. Abrams JB, Tuckerman ME (2008) Efficient and direct generation of multidimensional free energy surfaces via adiabatic dynamics without coordinate transformations. J Phys Chem B 112(49):15742

    Article  CAS  PubMed  Google Scholar 

  60. Lelièvre T, Rousset M, Stoltz G (2007) Computation of free energy profiles with parallel adaptive dynamics. J Chem Phys 126(13):134111

    Article  PubMed  CAS  Google Scholar 

  61. Zheng L, Yang W (2012) Practically efficient and robust free energy calculations: double-integration orthogonal space tempering. J Chem Theory Comput 8(3):810

    Article  CAS  PubMed  Google Scholar 

  62. Fu H, Shao X, Chipot C, Cai W (2016) Extended adaptive biasing force algorithm. An on-the-fly implementation for accurate free-energy calculations. J Chem Theory Comput 12(8):3506

    Article  CAS  PubMed  Google Scholar 

  63. Valsson O, Parrinello M (2014) Variational approach to enhanced sampling and free energy calculations. Phys Rev Lett 113(9):090601

    Article  PubMed  CAS  Google Scholar 

  64. Valsson O, Parrinello M (2015) Well-tempered variational approach to enhanced sampling. J Chem Theory Comput 11(5):1996

    Article  CAS  PubMed  Google Scholar 

  65. White AD, Voth GA (2014) An efficient and minimal method to bias molecular simulations with experimental data. J Chem Theory Comput 10:3023

    Article  CAS  PubMed  Google Scholar 

  66. Hocky GM, Dannenhoffer-Lafage T, Voth GA (2017) Coarse-grained directed simulation. J Chem Theory Comput 13(9):4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cesari A, Gil-Ley A, Bussi G (2016) Combining simulations and solution experiments as a paradigm for RNA force field refinement. J Chem Theory Comput 12(12):6192

    Article  CAS  PubMed  Google Scholar 

  68. White AD, Dama JF, Voth GA (2015) Designing free energy surfaces that match experimental data with metadynamics. J Chem Theory Comput 11(6):2451

    Article  CAS  PubMed  Google Scholar 

  69. Marinelli F, Faraldo-Gómez JD (2015) Ensemble-biased metadynamics: a molecular simulation method to sample experimental distributions. Biophys J 108(12):2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gil-Ley A, Bottaro S, Bussi G (2016) Empirical corrections to the amber RNA force field with target metadynamics. J Chem Theory Comput 12(6):2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bonomi M, Camilloni C, Cavalli A, Vendruscolo M (2016) Metainference: a Bayesian inference method for heterogeneous systems. Sci Adv 2(1):e1501177

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78(14):2690

    Article  CAS  Google Scholar 

  73. Bonomi M, Barducci A, Parrinello M (2009) Reconstructing the equilibrium Boltzmann distribution from well-tempered metadynamics. J Comput Chem 30(11):1615

    Article  CAS  PubMed  Google Scholar 

  74. Tiwary P, Parrinello M (2014) A time-independent free energy estimator for metadynamics. J Phys Chem B 119(3):736

    Article  PubMed  CAS  Google Scholar 

  75. Flyvbjerg H, Petersen H (1989) Error estimates on averages of correlated data. J Chem Phys 91(1):461

    Article  CAS  Google Scholar 

  76. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314(1):141

    Article  CAS  Google Scholar 

  77. Murata K, Sugita Y, Okamoto Y (2004) Free energy calculations for DNA base stacking by replica-exchange umbrella sampling. Chem Phys Lett 385(1):1

    Article  CAS  Google Scholar 

  78. Curuksu J, Zacharias M (2009) Enhanced conformational sampling of nucleic acids by a new Hamiltonian replica exchange molecular dynamics approach. J Chem Phys 130(10):03B610

    Article  PubMed  CAS  Google Scholar 

  79. Bartels C (2000) Analyzing biased Monte Carlo and molecular dynamics simulations. Chem Phys Lett 331(5–6):446

    Article  CAS  Google Scholar 

  80. Souaille M, Roux B (2001) Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput Phys Commun 135(1):40

    Article  CAS  Google Scholar 

  81. Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129(12):124105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Tan Z, Gallicchio E, Lapelosa M, Levy RM (2012) Theory of binless multi-state free energy estimation with applications to protein-ligand binding. J Chem Phys 136(14):04B608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Mlýnský V, Bussi G et al (2018) Molecular dynamics simulations reveal an interplay between SHAPE reagent binding and RNA flexibility. J Phys Chem Lett 9:313

    Article  PubMed  CAS  Google Scholar 

  84. Gasparotto P, Ceriotti M (2014) Recognizing molecular patterns by machine learning: an agnostic structural definition of the hydrogen bond. J Chem Phys 141(17):174110

    Article  PubMed  CAS  Google Scholar 

  85. Tribello GA, Ceriotti M, Parrinello M (2012) Using sketch-map coordinates to analyze and bias molecular dynamics simulations. Proc Natl Acad Sci USA 109(14):5196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. M. Sultan M, Pande VS (2017) TICA-metadynamics: accelerating metadynamics by using kinetically selected collective variables. J Chem Theory Comput 13(6):2440

    Google Scholar 

  87. Chen W, Ferguson AL (2018) Molecular enhanced sampling with autoencoders: On-the-fly collective variable discovery and accelerated free energy landscape exploration. J Comput Chem 39(25):2079

    Article  CAS  PubMed  Google Scholar 

  88. Sultan MM, Wayment-Steele HK, Pande VS (2018) Transferable neural networks for enhanced sampling of protein dynamics. J Chem Theory Comput 14(4):1887

    Article  CAS  PubMed  Google Scholar 

  89. Open path sampling. http://openpathsampling.org/latest

  90. Tuckerman M, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97(3):1990

    Article  CAS  Google Scholar 

  91. Ferrarotti MJ, Bottaro S, Pérez-Villa A, Bussi G (2014) Accurate multiple time step in biased molecular simulations. J Chem Theory Comput 11(1):139

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Writing and maintaining PLUMED involves a considerable amount of effort and we thus would like to finish by acknowledging everyone who has contributed to PLUMED in some way over the years. PLUMED 2 was developed by a team of five core developers that include the authors, Massimiliano Bonomi, Davide Branduardi, and Carlo Camilloni. Furthermore, Haochuan Chen, Haohao Fu, Glen Hocky, Omar Valsson, and Andrew White have all contributed modules to the code, whereas several other users have contributed other minor functionalities or fixed bugs in the code. Lastly, we would like to acknowledge the many users and developers who have emailed our user and developer lists or attended the various PLUMED tutorials and user meetings. The contributions of these people have been invaluable in terms of alerting us to bugs in the code.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giovanni Bussi or Gareth A. Tribello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bussi, G., Tribello, G.A. (2019). Analyzing and Biasing Simulations with PLUMED. In: Bonomi, M., Camilloni, C. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 2022. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9608-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9608-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9607-0

  • Online ISBN: 978-1-4939-9608-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics