Skip to main content

Ligand-Binding Calculations with Metadynamics

  • Protocol
  • First Online:
Book cover Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2022))

Abstract

All-atom molecular dynamics simulations can capture the dynamic degrees of freedom that characterize molecular recognition, the knowledge of which constitutes the cornerstone of rational approaches to drug design and optimization. In particular, enhanced sampling algorithms, such as metadynamics, are powerful tools to dramatically reduce the computational cost required for a mechanistic description of the binding process. Here, we describe the essential details characterizing these simulation strategies, focusing on the critical step of identifying suitable reaction coordinates, as well as on the different analysis algorithms to estimate binding affinity and residence times. We conclude with a survey of published applications that provides explicit examples of successful simulations for several targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo D, Hillger JM, AP IJ, Heitman LH (2014) Drug-target residence time—a case for G protein-coupled receptors. Med Res Rev 34(4):856–892. https://doi.org/10.1002/med.21307

    Article  CAS  PubMed  Google Scholar 

  2. Vauquelin G (2016) Cell membranes ... and how long drugs may exert beneficial pharmacological activity in vivo. Br J Clin Pharmacol 82(3):673–682. https://doi.org/10.1111/bcp.12996

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, Weis WI, Wess J, Kobilka BK (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482(7386):552–556. https://doi.org/10.1038/nature10867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100(2):020603. https://doi.org/10.1103/PhysRevLett.100.020603

    Article  CAS  PubMed  Google Scholar 

  5. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci U S A 99(20):12562–12566. https://doi.org/10.1073/pnas.202427399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bruce NJ, Ganotra GK, Kokh DB, Sadiq SK, Wade RC (2018) New approaches for computing ligand-receptor binding kinetics. Curr Opin Struct Biol 49:1–10. https://doi.org/10.1016/j.sbi.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  7. Sykes DA, Parry C, Reilly J, Wright P, Fairhurst RA, Charlton SJ (2014) Observed drug-receptor association rates are governed by membrane affinity: the importance of establishing “micro-pharmacokinetic/pharmacodynamic relationships” at the beta2-adrenoceptor. Mol Pharmacol 85(4):608–617. https://doi.org/10.1124/mol.113.090209

    Article  CAS  PubMed  Google Scholar 

  8. Vauquelin G (2015) On the ‘micro’-pharmacodynamic and pharmacokinetic mechanisms that contribute to long-lasting drug action. Expert Opin Drug Discov 10(10):1085–1098. https://doi.org/10.1517/17460441.2015.1067196

    Article  CAS  PubMed  Google Scholar 

  9. Saladino G, Estarellas C, Gervasio FL (2017) Recent progress in free energy methods. In: Chackalamannil S, Rotella D, Ward SE (eds) Comprehensive medicinal chemistry III. Elsevier, Oxford, pp 34–50. https://doi.org/10.1016/B978-0-12-409547-2.12356-X

    Chapter  Google Scholar 

  10. Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. Wiley Interdiscip Rev Comput Mol Sci 1(5):826–843. https://doi.org/10.1002/wcms.31

    Article  CAS  Google Scholar 

  11. Bussi G, Branduardi D (2015) Free-energy calculations with metadynamics: theory and practice. In: Parrill AL, Lipkowitz KB (eds) Reviews in computational chemistry, vol 28. John Wiley & Sons, Inc., Hoboken, NJ. https://doi.org/10.1002/9781118889886.ch1

    Chapter  Google Scholar 

  12. Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G (2014) PLUMED 2: new feathers for an old bird. Comput Phys Commun 185(2):604–613. https://doi.org/10.1016/j.cpc.2013.09.018

    Article  CAS  Google Scholar 

  13. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  14. Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, Wang L-P, Simmonett AC, Harrigan MP, Stern CD, Wiewiora RP, Brooks BR, Pande VS (2017) OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol 13(7):e1005659. https://doi.org/10.1371/journal.pcbi.1005659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scherer MK, Trendelkamp-Schroer B, Paul F, Perez-Hernandez G, Hoffmann M, Plattner N, Wehmeyer C, Prinz JH, Noe F (2015) PyEMMA 2: a software package for estimation, validation, and analysis of Markov models. J Chem Theory Comput 11(11):5525–5542. https://doi.org/10.1021/acs.jctc.5b00743

    Article  CAS  PubMed  Google Scholar 

  16. Beauchamp KA, Bowman GR, Lane TJ, Maibaum L, Haque IS, Pande VS (2011) MSMBuilder2: modeling conformational dynamics at the picosecond to millisecond scale. J Chem Theory Comput 7(10):3412–3419. https://doi.org/10.1021/ct200463m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu H, Paul F, Wehmeyer C, Noe F (2016) Multiensemble Markov models of molecular thermodynamics and kinetics. Proc Natl Acad Sci U S A 113(23):E3221–E3230. https://doi.org/10.1073/pnas.1525092113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sultan MM, Pande VS (2017) tICA-metadynamics: accelerating metadynamics by using kinetically selected collective variables. J Chem Theory Comput 13(6):2440–2447. https://doi.org/10.1021/acs.jctc.7b00182

    Article  CAS  Google Scholar 

  19. Stelzl LS, Kells A, Rosta E, Hummer G (2017) Dynamic histogram analysis to determine free energies and rates from biased simulations. J Chem Theory Comput 13(12):6328–6342. https://doi.org/10.1021/acs.jctc.7b00373

    Article  CAS  PubMed  Google Scholar 

  20. Allen TW, Andersen OS, Roux B (2004) Energetics of ion conduction through the gramicidin channel. Proc Natl Acad Sci U S A 101(1):117–122. https://doi.org/10.1073/pnas.2635314100

    Article  CAS  PubMed  Google Scholar 

  21. Roux B, Andersen OS, Allen TW (2008) Comment on “Free energy simulations of single and double ion occupancy in gramicidin A” [J. Chem. Phys. 126, 105103 (2007)]. J Chem Phys 128(22):227101. https://doi.org/10.1063/1.2931568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Limongelli V, Bonomi M, Parrinello M (2013) Funnel metadynamics as accurate binding free-energy method. Proc Natl Acad Sci U S A 110(16):6358–6363. https://doi.org/10.1073/pnas.1303186110

    Article  PubMed  PubMed Central  Google Scholar 

  23. Branduardi D, Gervasio FL, Parrinello M (2007) From A to B in free energy space. J Chem Phys 126(5):054103. https://doi.org/10.1063/1.2432340

    Article  CAS  PubMed  Google Scholar 

  24. Marchi M, Ballone P (1999) Adiabatic bias molecular dynamics: a method to navigate the conformational space of complex molecular systems. J Chem Phys 110(8):3697–3702. https://doi.org/10.1063/1.478259

    Article  CAS  Google Scholar 

  25. Bonomi M, Parrinello M (2010) Enhanced sampling in the well-tempered ensemble. Phys Rev Lett 104(19):190601. https://doi.org/10.1103/PhysRevLett.104.190601

    Article  CAS  PubMed  Google Scholar 

  26. Palazzesi F, Valsson O, Parrinello M (2017) Conformational entropy as collective variable for proteins. J Phys Chem Lett 8(19):4752–4756. https://doi.org/10.1021/acs.jpclett.7b01770

    Article  CAS  PubMed  Google Scholar 

  27. Tiwary P, Mondal J, Berne BJ (2017) How and when does an anticancer drug leave its binding site? Sci Adv 3(5):e1700014. https://doi.org/10.1126/sciadv.1700014

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lovera S, Sutto L, Boubeva R, Scapozza L, Dolker N, Gervasio FL (2012) The different flexibility of c-Src and c-Abl kinases regulates the accessibility of a druggable inactive conformation. J Am Chem Soc 134(5):2496–2499. https://doi.org/10.1021/ja210751t

    Article  CAS  PubMed  Google Scholar 

  29. Provasi D, Bortolato A, Filizola M (2009) Exploring molecular mechanisms of ligand recognition by opioid receptors with metadynamics. Biochemistry 48(42):10020–10029. https://doi.org/10.1021/bi901494n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McCarty J, Parrinello M (2017) A variational conformational dynamics approach to the selection of collective variables in metadynamics. J Chem Phys 147(20):204109. https://doi.org/10.1063/1.4998598

    Article  CAS  PubMed  Google Scholar 

  31. Tiwary P, Berne BJ (2016) How wet should be the reaction coordinate for ligand unbinding? J Chem Phys 145(5):054113. https://doi.org/10.1063/1.4959969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sarich M, Noé F, Schütte C (2010) On the approximation quality of Markov state models. Multiscale Model Simul 8(4):1154–1177. https://doi.org/10.1137/090764049

    Article  Google Scholar 

  33. Tiwary P, Berne BJ (2016) Spectral gap optimization of order parameters for sampling complex molecular systems. Proc Natl Acad Sci U S A 113(11):2839–2844. https://doi.org/10.1073/pnas.1600917113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sultan MM, Wayment-Steele HK, Pande VS (2018) Transferable neural networks for enhanced sampling of protein dynamics. J Chem Theory Comput 14(4):1887–1894. https://doi.org/10.1021/acs.jctc.8b00025

    Article  CAS  PubMed  Google Scholar 

  35. Tiana G (2008) Estimation of microscopic averages from metadynamics. Eur Phys J B 63(2):235–238. https://doi.org/10.1140/epjb/e2008-00232-8

    Article  CAS  Google Scholar 

  36. Bonomi M, Barducci A, Parrinello M (2009) Reconstructing the equilibrium Boltzmann distribution from well-tempered metadynamics. J Comput Chem 30(11):1615–1621. https://doi.org/10.1002/jcc.21305

    Article  CAS  PubMed  Google Scholar 

  37. Branduardi D, Bussi G, Parrinello M (2012) Metadynamics with adaptive Gaussians. J Chem Theory Comput 8(7):2247–2254. https://doi.org/10.1021/ct3002464

    Article  CAS  PubMed  Google Scholar 

  38. Tiwary P, Parrinello M (2015) A time-independent free energy estimator for metadynamics. J Phys Chem B 119(3):736–742. https://doi.org/10.1021/jp504920s

    Article  CAS  PubMed  Google Scholar 

  39. Grubmuller H (1995) Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 52(3):2893–2906

    CAS  PubMed  Google Scholar 

  40. Voter AF (1997) A method for accelerating the molecular dynamics simulation of infrequent events. J Chem Phys 106(11):4665–4677. https://doi.org/10.1063/1.473503

    Article  CAS  Google Scholar 

  41. Tiwary P, Parrinello M (2013) From metadynamics to dynamics. Phys Rev Lett 111(23):230602. https://doi.org/10.1103/PhysRevLett.111.230602

    Article  CAS  PubMed  Google Scholar 

  42. Valsson O, Tiwary P, Parrinello M (2016) Enhancing important fluctuations: rare events and metadynamics from a conceptual viewpoint. Annu Rev Phys Chem 67:159–184. https://doi.org/10.1146/annurev-physchem-040215-112229

    Article  CAS  PubMed  Google Scholar 

  43. Casasnovas R, Limongelli V, Tiwary P, Carloni P, Parrinello M (2017) Unbinding kinetics of a p38 MAP kinase type II inhibitor from metadynamics simulations. J Am Chem Soc 139(13):4780–4788. https://doi.org/10.1021/jacs.6b12950

    Article  CAS  PubMed  Google Scholar 

  44. Mondal J, Ahalawat N, Pandit S, Kay LE, Vallurupalli P (2018) Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme. PLoS Comput Biol 14(5):e1006180. https://doi.org/10.1371/journal.pcbi.1006180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salvalaglio M, Tiwary P, Parrinello M (2014) Assessing the reliability of the dynamics reconstructed from metadynamics. J Chem Theory Comput 10(4):1420–1425. https://doi.org/10.1021/ct500040r

    Article  CAS  PubMed  Google Scholar 

  46. Marinelli F, Pietrucci F, Laio A, Piana S (2009) A kinetic model of trp-cage folding from multiple biased molecular dynamics simulations. PLoS Comput Biol 5(8):e1000452. https://doi.org/10.1371/journal.pcbi.1000452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pietrucci F, Marinelli F, Carloni P, Laio A (2009) Substrate binding mechanism of HIV-1 protease from explicit-solvent atomistic simulations. J Am Chem Soc 131(33):11811–11818. https://doi.org/10.1021/ja903045y

    Article  CAS  PubMed  Google Scholar 

  48. Hummer G (2005) Position-dependent diffusion coefficients and free energies from Bayesian analysis of equilibrium and replica molecular dynamics simulations. New J Phys 7:34

    Article  Google Scholar 

  49. Juraszek J, Saladino G, van Erp TS, Gervasio FL (2013) Efficient numerical reconstruction of protein folding kinetics with partial path sampling and pathlike variables. Phys Rev Lett 110(10):108106. https://doi.org/10.1103/PhysRevLett.110.108106

    Article  CAS  PubMed  Google Scholar 

  50. Moroni D, Bolhuis PG, van Erp TS (2004) Rate constants for diffusive processes by partial path sampling. J Chem Phys 120(9):4055–4065. https://doi.org/10.1063/1.1644537

    Article  CAS  PubMed  Google Scholar 

  51. Dixit PD, Dill KA (2018) Caliber corrected Markov modeling (C2M2): correcting equilibrium Markov models. J Chem Theory Comput 14(2):1111–1119. https://doi.org/10.1021/acs.jctc.7b01126

    Article  CAS  PubMed  Google Scholar 

  52. Olsson S, Wu H, Paul F, Clementi C, Noe F (2017) Combining experimental and simulation data of molecular processes via augmented Markov models. Proc Natl Acad Sci U S A 114(31):8265–8270. https://doi.org/10.1073/pnas.1704803114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wan H, Zhou G, Voelz VA (2016) A maximum-caliber approach to predicting perturbed folding kinetics due to mutations. J Chem Theory Comput 12(12):5768–5776. https://doi.org/10.1021/acs.jctc.6b00938

    Article  CAS  PubMed  Google Scholar 

  54. Donati L, Keller BG (2018) Girsanov reweighting for metadynamics simulations. J Chem Phys 149(7):072335. https://doi.org/10.1063/1.5027728

    Article  CAS  PubMed  Google Scholar 

  55. Donati L, Hartmann C, Keller BG (2017) Girsanov reweighting for path ensembles and Markov state models. J Chem Phys 146(24):244112. https://doi.org/10.1063/1.4989474

    Article  CAS  PubMed  Google Scholar 

  56. Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, Masse C, Knight JL, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R, Murcko M, Frye L, Farid R, Lin T, Mobley DL, Jorgensen WL, Berne BJ, Friesner RA, Abel R (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137(7):2695–2703. https://doi.org/10.1021/ja512751q

    Article  CAS  PubMed  Google Scholar 

  57. Masetti M, Cavalli A, Recanatini M, Gervasio FL (2009) Exploring complex protein-ligand recognition mechanisms with coarse metadynamics. J Phys Chem B 113(14):4807–4816. https://doi.org/10.1021/jp803936q

    Article  CAS  PubMed  Google Scholar 

  58. Clark AJ, Tiwary P, Borrelli K, Feng S, Miller EB, Abel R, Friesner RA, Berne BJ (2016) Prediction of protein-ligand binding poses via a combination of induced fit docking and metadynamics simulations. J Chem Theory Comput 12(6):2990–2998. https://doi.org/10.1021/acs.jctc.6b00201

    Article  CAS  PubMed  Google Scholar 

  59. Baumgartner MP, Evans DA (2018) Lessons learned in induced fit docking and metadynamics in the drug design data resource grand challenge 2. J Comput Aided Mol Des 32(1):45–58. https://doi.org/10.1007/s10822-017-0081-y

    Article  CAS  PubMed  Google Scholar 

  60. Bortolato A, Deflorian F, Weiss DR, Mason JS (2015) Decoding the role of water dynamics in ligand-protein unbinding: CRF1R as a test case. J Chem Inf Model 55(9):1857–1866. https://doi.org/10.1021/acs.jcim.5b00440

    Article  CAS  PubMed  Google Scholar 

  61. Deganutti G, Zhukov A, Deflorian F, Federico S, Spalluto G, Cooke RM, Moro S, Mason JS, Bortolato A (2017) Impact of protein-ligand solvation and desolvation on transition state thermodynamic properties of adenosine A2A ligand binding kinetics. In Silico Pharmacol 5(1):16. https://doi.org/10.1007/s40203-017-0037-x

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gervasio FL, Laio A, Parrinello M (2005) Flexible docking in solution using metadynamics. J Am Chem Soc 127(8):2600–2607. https://doi.org/10.1021/ja0445950

    Article  CAS  PubMed  Google Scholar 

  63. Kranjc A, Bongarzone S, Rossetti G, Biarnes X, Cavalli A, Bolognesi ML, Roberti M, Legname G, Carloni P (2009) Docking ligands on protein surfaces: the case study of prion protein. J Chem Theory Comput 5(9):2565–2573. https://doi.org/10.1021/ct900257t

    Article  CAS  PubMed  Google Scholar 

  64. Limongelli V, Bonomi M, Marinelli L, Gervasio FL, Cavalli A, Novellino E, Parrinello M (2010) Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition. Proc Natl Acad Sci U S A 107(12):5411–5416. https://doi.org/10.1073/pnas.0913377107

    Article  PubMed  PubMed Central  Google Scholar 

  65. Incerti M, Russo S, Callegari D, Pala D, Giorgio C, Zanotti I, Barocelli E, Vicini P, Vacondio F, Rivara S, Castelli R, Tognolini M, Lodola A (2017) Metadynamics for perspective drug design: computationally driven synthesis of new protein-protein interaction inhibitors targeting the EphA2 receptor. J Med Chem 60(2):787–796. https://doi.org/10.1021/acs.jmedchem.6b01642

    Article  CAS  PubMed  Google Scholar 

  66. Morando MA, Saladino G, D’Amelio N, Pucheta-Martinez E, Lovera S, Lelli M, Lopez-Mendez B, Marenchino M, Campos-Olivas R, Gervasio FL (2016) Conformational selection and induced fit mechanisms in the binding of an anticancer drug to the c-Src kinase. Sci Rep 6:24439. https://doi.org/10.1038/srep24439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Saleh N, Saladino G, Gervasio FL, Haensele E, Banting L, Whitley DC, Sopkova-de Oliveira Santos J, Bureau R, Clark T (2016) A three-site mechanism for agonist/antagonist selective binding to vasopressin receptors. Angew Chem Int Ed Engl 55(28):8008–8012. https://doi.org/10.1002/anie.201602729

    Article  CAS  PubMed  Google Scholar 

  68. Yuan X, Raniolo S, Limongelli V, Xu Y (2018) The molecular mechanism underlying ligand binding to the membrane-embedded site of a G-protein-coupled receptor. J Chem Theory Comput 14(5):2761–2770. https://doi.org/10.1021/acs.jctc.8b00046

    Article  CAS  PubMed  Google Scholar 

  69. Saleh N, Ibrahim P, Saladino G, Gervasio FL, Clark T (2017) An efficient metadynamics-based protocol to model the binding affinity and the transition state ensemble of G-protein-coupled receptor ligands. J Chem Inf Model 57(5):1210–1217. https://doi.org/10.1021/acs.jcim.6b00772

    Article  CAS  PubMed  Google Scholar 

  70. Vargiu AV, Ruggerone P, Magistrato A, Carloni P (2008) Dissociation of minor groove binders from DNA: insights from metadynamics simulations. Nucleic Acids Res 36(18):5910–5921. https://doi.org/10.1093/nar/gkn561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bochicchio A, Rossetti G, Tabarrini O, Kraubeta S, Carloni P (2015) Molecular view of ligands specificity for CAG repeats in anti-Huntington therapy. J Chem Theory Comput 11(10):4911–4922. https://doi.org/10.1021/acs.jctc.5b00208

    Article  CAS  PubMed  Google Scholar 

  72. Tiwary P, Limongelli V, Salvalaglio M, Parrinello M (2015) Kinetics of protein-ligand unbinding: predicting pathways, rates, and rate-limiting steps. Proc Natl Acad Sci U S A 112(5):E386–E391. https://doi.org/10.1073/pnas.1424461112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang Y, Martins JM, Lindorff-Larsen K (2017) Biomolecular conformational changes and ligand binding: from kinetics to thermodynamics. Chem Sci 8(9):6466–6473. https://doi.org/10.1039/c7sc01627a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bocahut A, Bernad S, Sebban P, Sacquin-Mora S (2009) Relating the diffusion of small ligands in human neuroglobin to its structural and mechanical properties. J Phys Chem B 113(50):16257–16267. https://doi.org/10.1021/jp906854x

    Article  CAS  PubMed  Google Scholar 

  75. Russo S, Callegari D, Incerti M, Pala D, Giorgio C, Brunetti J, Bracci L, Vicini P, Barocelli E, Capoferri L, Rivara S, Tognolini M, Mor M, Lodola A (2016) Exploiting free-energy minima to design novel EphA2 protein-protein antagonists: from simulation to experiment and return. Chemistry 22(24):8048–8052. https://doi.org/10.1002/chem.201600993

    Article  CAS  PubMed  Google Scholar 

  76. Lovera S, Morando M, Pucheta-Martinez E, Martinez-Torrecuadrada JL, Saladino G, Gervasio FL (2015) Towards a molecular understanding of the link between Imatinib resistance and kinase conformational dynamics. PLoS Comput Biol 11(11):e1004578. https://doi.org/10.1371/journal.pcbi.1004578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Marino KA, Sutto L, Gervasio FL (2015) The effect of a widespread cancer-causing mutation on the inactive to active dynamics of the B-Raf kinase. J Am Chem Soc 137(16):5280–5283. https://doi.org/10.1021/jacs.5b01421

    Article  CAS  PubMed  Google Scholar 

  78. Fidelak J, Juraszek J, Branduardi D, Bianciotto M, Gervasio FL (2010) Free-energy-based methods for binding profile determination in a congeneric series of CDK2 inhibitors. J Phys Chem B 114(29):9516–9524. https://doi.org/10.1021/jp911689r

    Article  CAS  PubMed  Google Scholar 

  79. Saladino G, Gauthier L, Bianciotto M, Gervasio FL (2012) Assessing the performance of metadynamics and path variables in predicting the binding free energies of p38 inhibitors. J Chem Theory Comput 8(4):1165–1170. https://doi.org/10.1021/ct3001377

    Article  CAS  PubMed  Google Scholar 

  80. Crowley RS, Riley AP, Sherwood AM, Groer CE, Shivaperumal N, Biscaia M, Paton K, Schneider S, Provasi D, Kivell BM, Filizola M, Prisinzano TE (2016) Synthetic studies of neoclerodane diterpenes from Salvia divinorum: identification of a potent and centrally acting mu opioid analgesic with reduced abuse liability. J Med Chem 59(24):11027–11038. https://doi.org/10.1021/acs.jmedchem.6b01235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shang Y, Yeatman HR, Provasi D, Alt A, Christopoulos A, Canals M, Filizola M (2016) Proposed mode of binding and action of positive allosteric modulators at opioid receptors. ACS Chem Biol 11(5):1220–1229. https://doi.org/10.1021/acschembio.5b00712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Saleh N, Hucke O, Kramer G, Schmidt E, Montel F, Lipinski R, Ferger B, Clark T, Hildebrand PW, Tautermann CS (2018) Multiple binding sites contribute to the mechanism of mixed agonistic and positive allosteric modulators of the cannabinoid CB1 receptor. Angew Chem Int Ed Engl 57(10):2580–2585. https://doi.org/10.1002/anie.201708764

    Article  CAS  PubMed  Google Scholar 

  83. Yuri S, Atsushi K, Kyosuke N, Takatsugu H (2018) Analysis by metadynamics simulation of binding pathway of influenza virus M2 channel blockers. Microbiol Immunol 62(1):34–43. https://doi.org/10.1111/1348-0421.12561

    Article  CAS  Google Scholar 

  84. Comitani F, Limongelli V, Molteni C (2016) The free energy landscape of GABA binding to a pentameric ligand-gated ion channel and its disruption by mutations. J Chem Theory Comput 12(7):3398–3406. https://doi.org/10.1021/acs.jctc.6b00303

    Article  CAS  PubMed  Google Scholar 

  85. Di Leva FS, Festa C, Renga B, Sepe V, Novellino E, Fiorucci S, Zampella A, Limongelli V (2015) Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism. Sci Rep 5:16605. https://doi.org/10.1038/srep16605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zheng W, Vargiu AV, Rohrdanz MA, Carloni P, Clementi C (2013) Molecular recognition of DNA by ligands: roughness and complexity of the free energy profile. J Chem Phys 139(14):145102. https://doi.org/10.1063/1.4824106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mlynsky V, Bussi G (2018) Molecular dynamics simulations reveal an interplay between SHAPE reagent binding and RNA flexibility. J Phys Chem Lett 9(2):313–318. https://doi.org/10.1021/acs.jpclett.7b02921

    Article  CAS  PubMed  Google Scholar 

  88. Buch I, Giorgino T, De Fabritiis G (2011) Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci U S A 108(25):10184–10189. https://doi.org/10.1073/pnas.1103547108

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bussi G, Gervasio FL, Laio A, Parrinello M (2006) Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. J Am Chem Soc 128(41):13435–13441. https://doi.org/10.1021/ja062463w

    Article  CAS  PubMed  Google Scholar 

  90. Bonomi M, Branduardi D, Gervasio FL, Parrinello M (2008) The unfolded ensemble and folding mechanism of the C-terminal GB1 beta-hairpin. J Am Chem Soc 130(42):13938–13944. https://doi.org/10.1021/ja803652f

    Article  CAS  PubMed  Google Scholar 

  91. Dixit PD, Dill KA (2014) Inferring microscopic kinetic rates from stationary state distributions. J Chem Theory Comput 10(8):3002–3005. https://doi.org/10.1021/ct5001389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Kristen Marino, Sebastian Schneider, and Abhijeet Kapoor for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Provasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Provasi, D. (2019). Ligand-Binding Calculations with Metadynamics. In: Bonomi, M., Camilloni, C. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 2022. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9608-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9608-7_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9607-0

  • Online ISBN: 978-1-4939-9608-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics