Skip to main content

Analysis of Proteus mirabilis Social Behaviors on Surfaces

  • Protocol
  • First Online:
Proteus mirabilis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2021))

Abstract

The opportunistic pathogen Proteus mirabilis engages in visually dramatic and dynamic social behaviors. Populations of P. mirabilis can rapidly occupy surfaces, such as high-percentage agar and latex, through a collective surface-based motility termed swarming. When in these surface-occupying swarm colonies, P. mirabilis can distinguish between clonal siblings (self) and foreign P. mirabilis strains (nonself). This ability can be assessed by at least two standard methods: boundary formation, aka a Dienes line, and territorial exclusion. Here we describe methods for quantitative analysis of swarm colony expansion, of boundary formation, and of territorial exclusion. These assays can be employed to assess several aspects of P. mirabilis sociality including collective swarm motility, competition, and self versus nonself recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drzewiecka D (2016) Significance and roles of Proteus spp. bacteria in natural environments. Microb Ecol 72(4):741–758. https://doi.org/10.1007/s00248-015-0720-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schaffer JN, Pearson MM (2015) Proteus mirabilis and urinary tract infections. Microbiol Spectr 3(5):1–39. https://doi.org/10.1128/microbiolspec.UTI-0017-2013

    Article  CAS  Google Scholar 

  3. Allison C, Emody L, Coleman N, Hughes C (1994) The role of swarm cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis. J Infect Dis 169(5):1155–1158. https://doi.org/10.1093/infdis/169.5.1155

    Article  CAS  PubMed  Google Scholar 

  4. Armbruster CE, Forsyth-DeOrnellas V, Johnson AO, Smith SN, Zhao L, Wu W, Mobley HLT (2017) Genome-wide transposon mutagenesis of Proteus mirabilis: essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements. PLoS Pathog 13(6):e1006434. https://doi.org/10.1371/journal.ppat.1006434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burall LS, Harro JM, Li X, Lockatell CV, Himpsl SD, Hebel JR, Johnson DE, Mobley HLT (2004) Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun 72(5):2922–2938. https://doi.org/10.1128/Iai.72.5.2922-2938.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pearson MM, Yep A, Smith SN, Mobley HLT (2011) Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression. Infect Immun 79(7):2619–2631. https://doi.org/10.1128/IAI.05152-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stickler D, Hughes G (1999) Ability of Proteus mirabilis to swarm over urethral catheters. Eur J Clin Microbiol Infect Dis 18(3):206–208. https://doi.org/10.1007/s100960050260

    Article  CAS  PubMed  Google Scholar 

  8. Rauprich O, Matsushita M, Weijer CJ, Siegert F, Esipov SE, Shapiro JA (1996) Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol 178(22):6525–6538. https://doi.org/10.1128/jb.178.22.6525-6538.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoeniger JF (1966) Cellular changes accompanying the swarming of Proteus mirabilis. II. Observations of stained organisms. Can J Microbiol 12(1):113–123. https://doi.org/10.1139/m66-017

    Article  CAS  PubMed  Google Scholar 

  10. Hoeniger JF (1965) Development of flagella by Proteus mirabilis. J Gen Microbiol 40(1):29. https://doi.org/10.1099/00221287-40-1-29

    Article  Google Scholar 

  11. Pearson MM, Rasko DA, Smith SN, Mobley HLT (2010) Transcriptome of swarming Proteus mirabilis. Infect Immun 78(6):2834–2845. https://doi.org/10.1128/IAI.01222-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jones BV, Young R, Mahenthiralingam E, Stickler DJ (2004) Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infect Immun 72(7):3941–3950. https://doi.org/10.1128/IAI.72.7.3941-3950.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dienes L (1946) Reproductive processes in Proteus cultures. Proc Soc Exp Biol Med 63(2):265–270. https://doi.org/10.3181/00379727-63-15570

    Article  CAS  PubMed  Google Scholar 

  14. Senior BW (1977) The Dienes phenomenon: identification of the determinants of compatibility. J Gen Microbiol 102(2):235–244. https://doi.org/10.1099/00221287-102-2-235

    Article  CAS  PubMed  Google Scholar 

  15. Gibbs KA, Urbanowski ML, Greenberg EP (2008) Genetic determinants of self identity and social recognition in bacteria. Science 321(5886):256–259. https://doi.org/10.1126/science.1160033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saak CC, Gibbs KA (2016) The self-identity protein IdsD is communicated between cells in swarming Proteus mirabilis colonies. J Bacteriol 198(24):3278–3286. https://doi.org/10.1128/JB.00402-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Louvois J (1969) Serotyping and the Dienes reaction on Proteus mirabilis from hospital infections. J Clin Pathol 22(3):263–268. http://dx.doi.org/10.1136/jcp.22.3.263

    Google Scholar 

  18. Skirrow MB (1969) The dienes (mutual inhibition) test in the investigation of Proteus infections. J Med Microbiol 2(4):471–477. https://doi.org/10.1099/00222615-2-4-471

    Article  CAS  PubMed  Google Scholar 

  19. Alteri CJ, Himpsl SD, Pickens SR, Lindner JR, Zora JS, Miller JE, Arno PD, Straight SW, Mobley HLT (2013) Multicellular bacteria deploy the type VI secretion system to preemptively strike neighboring cells. PLoS Pathog 9(9):e1003608. https://doi.org/10.1371/journal.ppat.1003608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wenren LM, Sullivan NL, Cardarelli L, Septer AN, Gibbs KA (2013) Two independent pathways for self-recognition in Proteus mirabilis are linked by type VI-dependent export. mBio 4(4). https://doi.org/10.1128/mBio.00374-13

  21. Belas R, Erskine D, Flaherty D (1991) Transposon mutagenesis in Proteus mirabilis. J Bacteriol 173(19):6289–6293. https://doi.org/10.1128/jb.173.19.6289-6293.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dietrich LE, Teal TK, Price-Whelan A, Newman DK (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321(5893):1203–1206. https://doi.org/10.1126/science.1160619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morales-Soto N, Anyan ME, Mattingly AE, Madukoma CS, Harvey CW, Alber M, Deziel E, Kearns DB, Shrout JD (2015) Preparation, imaging, and quantification of bacterial surface motility assays. J Vis Exp (98). https://doi.org/10.3791/52338

  24. Zepeda-Rivera MA, Saak CC, Gibbs KA (2018) A proposed chaperone of the bacterial type VI secretion system functions to constrain a self-identity protein. J Bacteriol 200(14). https://doi.org/10.1128/JB.00688-17

  25. Little K, Tipping MJ, Gibbs KA (2018) Swarmer cell development of the bacterium Proteus mirabilis requires the conserved ECA biosynthesis gene, rffG. J Bacteriol 200(18). https://doi.org/10.1128/JB.00230-18

  26. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  27. Morris JD, Hewitt JL, Wolfe LG, Kamatkar NG, Chapman SM, Diener JM, Courtney AJ, Leevy WM, Shrout JD (2011) Imaging and analysis of Pseudomonas aeruginosa swarming and rhamnolipid production. Appl Environ Microbiol 77(23):8310–8317. https://doi.org/10.1128/AEM.06644-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alavi M, Belas R (2001) Surface sensing, swarmer cell differentiation, and biofilm development. Methods Enzymol 336:29–40. https://doi.org/10.1016/S0076-6879(01)36575-8

    Article  CAS  PubMed  Google Scholar 

  29. Armbruster CE, Mobley HLT (2012) Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol 10(11):743–754. https://doi.org/10.1038/nrmicro2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Belas R (2014) Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol 22(9):517–527. https://doi.org/10.1016/j.tim.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  31. Morgenstein RM, Szostek B, Rather PN (2010) Regulation of gene expression during swarmer cell differentiation in Proteus mirabilis. FEMS Microbiol Rev 34(5):753–763. https://doi.org/10.1111/j.1574-6976.2010.00229.x

    Article  CAS  PubMed  Google Scholar 

  32. Rather PN (2005) Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol 7(8):1065–1073. https://doi.org/10.1111/j.1462-2920.2005.00806.x

    Article  CAS  PubMed  Google Scholar 

  33. Clemmer KM, Rather PN (2007) Regulation of flhDC expression in Proteus mirabilis. Res Microbiol 158(3):295–302. https://doi.org/10.1016/j.resmic.2006.11.010

    Article  CAS  PubMed  Google Scholar 

  34. Morgenstein RM, Rather PN (2012) Role of the Umo proteins and the Rcs phosphorelay in the swarming motility of the wild type and an O-antigen (waaL) mutant of Proteus mirabilis. J Bacteriol 194(3):669–676. https://doi.org/10.1128/Jb.06047-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pearson MM, Mobley HLT (2008) Repression of motility during fimbrial expression: identification of 14 mrpJ gene paralogues in Proteus mirabilis. Mol Microbiol 69(2):548–558. https://doi.org/10.1111/j.1365-2958.2008.06307.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adzitey F, Huda N, Ali GR (2013) Molecular techniques for detecting and typing of bacteria, advantages and application to foodborne pathogens isolated from ducks. 3 Biotech 3(2):97–107. https://doi.org/10.1007/s13205-012-0074-4

    Article  PubMed  Google Scholar 

  37. Saak CC, Zepeda-Rivera MA, Gibbs KA (2017) A single point mutation in a TssB/VipA homolog disrupts sheath formation in the type VI secretion system of Proteus mirabilis. PLoS One 12(9):e0184797. https://doi.org/10.1371/journal.pone.0184797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adamus-Bialek W, Zajac E, Parniewski P, Kaca W (2013) Comparison of antibiotic resistance patterns in collections of Escherichia coli and Proteus mirabilis uropathogenic strains. Mol Biol Rep 40(4):3429–3435. https://doi.org/10.1007/s11033-012-2420-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eisenberg GM, Weiss W, Flippin HF (1958) In vitro susceptibility of Proteus species to streptomycin, chloramphenicol, tetracycline, and novobiocin. Am J Clin Pathol 30(1):20–24. https://doi.org/10.1093/ajcp/20.4.325

    Article  CAS  PubMed  Google Scholar 

  40. McCoy AJ, Liu H, Falla TJ, Gunn JS (2001) Identification of Proteus mirabilis mutants with increased sensitivity to antimicrobial peptides. Antimicrob Agents Chemother 45(7):2030–2037. https://doi.org/10.1128/AAC.45.7.2030-2037.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sud IJ, Feingold DS (1970) Mechanism of polymyxin B resistance in Proteus mirabilis. J Bacteriol 104(1):289–294. 

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank members of the Gibbs lab for thoughtful discussions and development of the protocols. The writing of this review was funded by a Smith Family Graduate Fellowship in Science and Engineering (to K.L.), the David and Lucile Packard Foundation, the George W. Merck Fund, and Harvard University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karine A. Gibbs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Little, K., Gibbs, K.A. (2019). Analysis of Proteus mirabilis Social Behaviors on Surfaces. In: Pearson, M. (eds) Proteus mirabilis. Methods in Molecular Biology, vol 2021. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9601-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9601-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9600-1

  • Online ISBN: 978-1-4939-9601-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics