Skip to main content

Classical Immunoproteomics: Serological Proteome Analysis (SERPA) for Antigen Identification

  • Protocol
  • First Online:
Immunoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2024))

Abstract

The study of the humoral immune response to infectious and chronic diseases is important for understanding the disease progression, identification of protective antigens, vaccine development, and discovery of biomarkers for early diagnosis. Proteomic approaches, including serological proteome analysis (SERPA), have been used to identify the repertoire of immunoreactive proteins in various diseases. In this chapter, we provide an outline of the SERPA approach, using the analysis of sera from mice vaccinated with a live attenuated tularemia vaccine as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engelfried JJ, Spear F (1966) Modified agglutination test for Pasteurella tularensis. Appl Microbiol 14:267–270

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Carlsson HE, Lindberg AA, Lindberg G et al (1979) Enzyme-linked immunosorbent assay for immunological diagnosis of human tularemia. J Clin Microbiol 10:615–621

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bevanger L, Maeland JA, Naess AI (1988) Agglutinins and antibodies to Francisella tularensis outer membrane antigens in the early diagnosis of disease during an outbreak of tularemia. J Clin Microbiol 26:433–437

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kilmury SLN, Twine SM (2010) The Francisella tularensis proteome and its recognition by antibodies. Front Microbiol 1:143

    PubMed  Google Scholar 

  5. Vytvytska O, Nagy E, Blüggel M et al (2002) Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis. Proteomics 2:580–590

    Article  CAS  Google Scholar 

  6. Klade CS (2002) Proteomics approaches towards antigen discovery and vaccine development. Curr Opin Mol Ther 4:216–223

    CAS  PubMed  Google Scholar 

  7. Pizarro-Guajardo M, Ravanal MC, Paez MD et al (2018) Identification of Clostridium difficile immunoreactive spore proteins of the epidemic strain R20291. Proteomics Clin Appl 12:e1700182

    Article  Google Scholar 

  8. Pang H-Y, Li Y, Wu Z-H et al (2010) Immunoproteomic analysis and identification of novel immunogenic proteins from Vibrio harveyi. J Appl Microbiol 109:1800–1809

    CAS  PubMed  Google Scholar 

  9. Li H, Ye M-Z, Peng B et al (2010) Immunoproteomic identification of polyvalent vaccine candidates from Vibrio parahaemolyticus outer membrane proteins. J Proteome Res 9:2573–2583

    Article  CAS  Google Scholar 

  10. Dai L, Li J, Tsay J-CJ et al (2017) Identification of autoantibodies to ECH1 and HNRNPA2B1 as potential biomarkers in the early detection of lung cancer. Oncoimmunology 6:e1310359

    Article  Google Scholar 

  11. Parida SK, Kaufmann SHE (2010) The quest for biomarkers in tuberculosis. Drug Discov Today 15:148–157

    Article  CAS  Google Scholar 

  12. Tan HT, Low J, Lim SG, Chung MCM (2009) Serum autoantibodies as biomarkers for early cancer detection. FEBS J 276:6880–6904

    Article  CAS  Google Scholar 

  13. Desmetz C, Mange A, Maudelonde T, Solassol J (2011) Autoantibody signatures: progress and perspectives for early cancer detection. J Cell Mol Med 15:2013–2024

    Article  CAS  Google Scholar 

  14. Forgber M, Trefzer U, Sterry W, Walden P (2009) Proteome serological determination of tumor-associated antigens in melanoma. PLoS One 4:e5199

    Article  Google Scholar 

  15. Gao H, Zheng Z, Mao Y et al (2014) Identification of tumor antigens that elicit a humoral immune response in the sera of Chinese esophageal squamous cell carcinoma patients by modified serological proteome analysis. Cancer Lett 344:54–61

    Article  CAS  Google Scholar 

  16. Klein-Scory S, Kübler S, Diehl H et al (2010) Immunoscreening of the extracellular proteome of colorectal cancer cells. BMC Cancer 10:70

    Article  Google Scholar 

  17. Mustafa MZ, Nguyen VH, Le Naour F et al (2016) Autoantibody signatures defined by serological proteome analysis in sera from patients with cholangiocarcinoma. J Transl Med 14:17

    Article  Google Scholar 

  18. Dai L, Qu Y, Li J et al (2017) Serological proteome analysis approach-based identification of ENO1 as a tumor-associated antigen and its autoantibody could enhance the sensitivity of CEA and CYFRA 21-1 in the detection of non-small cell lung cancer. Oncotarget 8:36664–36673

    PubMed  PubMed Central  Google Scholar 

  19. Krah A, Miehlke S, Pleissner K-P et al (2004) Identification of candidate antigens for serologic detection of Helicobacter pylori-infected patients with gastric carcinoma. Int J Cancer 108:456–463

    Article  CAS  Google Scholar 

  20. Colomba P, Fontana S, Salemi G et al (2014) Identification of biomarkers in cerebrospinal fluid and serum of multiple sclerosis patients by immunoproteomics approach. Int J Mol Sci 15:23269–23282

    Article  Google Scholar 

  21. Grandjean M, Sermeus A, Branders S et al (2013) Hypoxia integration in the serological proteome analysis unmasks tumor antigens and fosters the identification of anti-phospho-eEF2 antibodies as potential cancer biomarkers. PLoS One 8:e76508

    Article  CAS  Google Scholar 

  22. Biswas S, Sharma S, Saroha A et al (2013) Identification of novel autoantigen in the synovial fluid of rheumatoid arthritis patients using an immunoproteomics approach. PLoS One 8:e56246

    Article  CAS  Google Scholar 

  23. Yang L, Fujimoto M, Murota H et al (2015) Proteomic identification of heterogeneous nuclear ribonucleoprotein K as a novel cold-associated autoantigen in patients with secondary Raynaud’s phenomenon. Rheumatology 54:349–358

    Article  CAS  Google Scholar 

  24. Loshaj-Shala A, Colzani M, Brezovska K et al (2018) Immunoproteomic identification of antigenic candidate Campylobacter jejuni and human peripheral nerve proteins involved in Guillain-Barré syndrome. J Neuroimmunol 317:77–83

    Article  CAS  Google Scholar 

  25. Eliasson H, Broman T, Forsman M, Bäck E (2006) Tularemia: current epidemiology and disease management. Infect Dis Clin N Am 20:289–311, ix

    Article  Google Scholar 

  26. Zilinskas RA (2017) A brief history of biological weapons programmes and the use of animal pathogens as biological warfare agents. Rev Sci Tech 36:415–422

    Article  CAS  Google Scholar 

  27. Dennis DT, Inglesby TV, Henderson DA et al (2001) Tularemia as a biological weapon: medical and public health management. JAMA 285:2763–2773

    Article  CAS  Google Scholar 

  28. Twine SM, Petit MD, Shen H et al (2006) Immunoproteomic analysis of the murine antibody response to successful and failed immunization with live anti-Francisella vaccines. Biochem Biophys Res Commun 346:999–1008

    Article  CAS  Google Scholar 

  29. Twine SM, Mykytczuk NCS, Petit MD et al (2006) In vivo proteomic analysis of the intracellular bacterial pathogen, Francisella tularensis, isolated from mouse spleen. Biochem Biophys Res Commun 345:1621–1633

    Article  CAS  Google Scholar 

  30. Twine SM, Petit MD, Fulton KM et al (2010) Immunoproteomics analysis of the murine antibody response to vaccination with an improved Francisella tularensis live vaccine strain (LVS). PLoS One 5:e10000

    Article  Google Scholar 

  31. Thomas RM, Twine SM, Fulton KM et al (2011) Glycosylation of DsbA in Francisella tularensis subspecies tularensis. J Bacteriol. https://doi.org/10.1128/JB.00438-11

    Article  CAS  Google Scholar 

  32. Havlasová J, Hernychová L, Halada P et al (2002) Mapping of immunoreactive antigens of Francisella tularensis live vaccine strain. Proteomics 2:857–867

    Article  Google Scholar 

  33. Havlasová J, Hernychová L, Brychta M et al (2005) Proteomic analysis of anti-Francisella tularensis LVS antibody response in murine model of tularemia. Proteomics 5:2090–2103

    Article  Google Scholar 

  34. Janovská S, Pávková I, Reichelová M et al (2007) Proteomic analysis of antibody response in a case of laboratory-acquired infection with Francisella tularensis subsp. tularensis. Folia Microbiol 52:194–198

    Article  Google Scholar 

  35. Janovská S, Pávková I, Hubálek M et al (2007) Identification of immunoreactive antigens in membrane proteins enriched fraction from Francisella tularensis LVS. Immunol Lett 108:151–159

    Article  Google Scholar 

  36. Huntley JF, Conley PG, Hagman KE, Norgard MV (2007) Characterization of Francisella tularensis outer membrane proteins. J Bacteriol 189:561–574

    Article  CAS  Google Scholar 

  37. Huntley JF, Conley PG, Rasko DA et al (2008) Native outer membrane proteins protect mice against pulmonary challenge with virulent type A Francisella tularensis. Infect Immun 76:3664–3671

    Article  CAS  Google Scholar 

  38. Straskova A, Spidlova P, Mou S et al (2015) Francisella tularensis type B ΔdsbA mutant protects against type A strain and induces strong inflammatory cytokine and Th1-like antibody response in vivo. Pathog Dis 73:ftv058

    Article  Google Scholar 

  39. Post DMB, Slütter B, Schilling B et al (2017) Characterization of inner and outer membrane proteins from Francisella tularensis strains LVS and Schu S4 and identification of potential subunit vaccine candidates. MBio 8. https://doi.org/10.1128/mBio.01592-17

  40. Njeru J, Tomaso H, Mertens K et al (2017) Serological evidence of Francisella tularensis in febrile patients seeking treatment at remote hospitals, northeastern Kenya, 2014–2015. New Microbes New Infect 19:62–66

    Article  CAS  Google Scholar 

  41. Zákutná Ľ, Dorko E, Rimárová K, Kizeková M (2015) Pilot cross-sectional study of three zoonoses (Lyme disease, Tularaemia, Leptospirosis) among healthy blood donors in eastern Slovakia. Cent Eur J Public Health 23:100–106

    Article  Google Scholar 

  42. Chandler JC, Sutherland MD, Harton MR et al (2015) Francisella tularensis LVS surface and membrane proteins as targets of effective post-exposure immunization for tularemia. J Proteome Res 14:664–675

    Article  CAS  Google Scholar 

  43. Lu Z, Perkins HM, Sharon J (2014) Antibodies to both terminal and internal B-cell epitopes of Francisella tularensis O-polysaccharide produced by patients with tularemia. Clin Vaccine Immunol 21:227–233

    Article  Google Scholar 

  44. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  45. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Contract No. HHSN266200500041C, and in part by the National Research Council, Canada. The authors thank Dr Freyja Lynn, Vicki Pierson, Kristin Debord, and Patrick Sanz (National Institutes of Allergy and Infectious Diseases); Dr J. Wayne Conlan, Luc Tessier, and Marianne Savicky (National Research Council, Canada); and Gretchen Stup (DynPort Vaccine Company) for their contributions throughout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly M. Fulton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fulton, K.M., Ananchenko, A., Wolfraim, L., Martin, S., Twine, S.M. (2019). Classical Immunoproteomics: Serological Proteome Analysis (SERPA) for Antigen Identification. In: Fulton, K., Twine, S. (eds) Immunoproteomics. Methods in Molecular Biology, vol 2024. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9597-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9597-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9596-7

  • Online ISBN: 978-1-4939-9597-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics