Skip to main content

A Molecular Immunoproteomics Approach to Assess the Viral Antigenicity of Influenza

  • Protocol
  • First Online:
Immunoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2024))

Abstract

New surveillance methods employing mass spectrometry (MS) have been developed to characterize the influenza virus and, by extension, other biopathogens at the molecular level. The structure and antigenicity of protein antigens on the surface of the viral capsid are screened in a single step employing the immunoproteomics MS-based approach. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) coupled to gel electrophoresis is used both to identify viral antigens and screen their antigenicity. Evidence that antigen-antibody complexes, and protein complexes more generally, can survive on conventional MALDI targets has allowed both the primary structure and antigenicity of viral strains to be rapidly screened and protein epitopes to be identified with molecular precision. The approach should aid in future screening of the virus and assist in the development of immunogenic peptide constructs as alternative treatments to vaccination over the whole inactivated virus. The assay adds to the repertoire of mass spectrometric approaches for examining antigen–antibody interactions, in particular, and protein complexes, in general, without the need to immobilize, tag, or recover either component.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicholson KG, Wood JM, Zambon M (2003) Influenza. Lancet 362:1733–1745

    Article  CAS  Google Scholar 

  2. Barry JM (2004) The great influenza: the epic story of the deadliest plague in history. Penguin Viking, New York, NY

    Google Scholar 

  3. World Health Organization Global Influenza Surveillance Network. http://www.who.int/influenza/surveillance_monitoring/en/

  4. Stephenson I, Nicholson KG (2001) Influenza: vaccination and treatment. Eur Respir J 17:1282–1293

    Article  CAS  Google Scholar 

  5. Girard MP, Cherian T, Pervikov Y, Kieny MP (2005) A review of vaccine research and development: human acute respiratory infections. Vaccine 23:5708–5724

    Article  CAS  Google Scholar 

  6. Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, Garten RJ, Gubareva LV, Xu X, Bridges CB, Uyeki TM (2009) Emergence of a novel swine-origin influenza a (H1N1) virus in humans. N Engl J Med 360:2605–2615

    Article  Google Scholar 

  7. Garman E, Laver G (2004) Controlling influenza by inhibiting the virus's neuraminidase. Curr Drug Targets 5:119–136

    Article  CAS  Google Scholar 

  8. Webster RG, Walker EJ (2003) Influenza: the World is teetering on the edge of a pandemic that could kill a large fraction of the human population. Am Sci 91:122

    Article  Google Scholar 

  9. Horimoto T, Kawaoka Y (2005) Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol 3:591–600

    Article  CAS  Google Scholar 

  10. Downard KM, Morrissey B, Schwahn AB (2009) Mass spectrometry analysis of the influenza virus. Mass Spectrom Rev 28:35–49

    Article  CAS  Google Scholar 

  11. Downard KM (2013) Proteotyping for the rapid identification of pandemic influenza virus and other biopathogens. Chem Soc Rev 42:8584–8595

    Article  CAS  Google Scholar 

  12. Kiselar JG, Downard KM (1999) Antigenic surveillance of the influenza virus by mass spectrometry. Biochemistry 38:14185–14191

    Article  CAS  Google Scholar 

  13. Morrissey B, Downard KM (2006) A proteomics approach to survey the antigenicity of the influenza virus by mass spectrometry. Proteomics 6:2034–2041

    Article  CAS  Google Scholar 

  14. Morrissey B, Streamer M, Downard KM (2007) Antigenic characterisation of H3N2 subtypes of the influenza virus by mass spectrometry. J Virol Methods 145:106–114

    Article  CAS  Google Scholar 

  15. Kiselar JG, Downard KM (1999) Direct identification of protein epitopes by mass spectrometry without immobilization of antibody and isolation of antibody-peptide complexes. Anal Chem 71:1792–1799

    Article  CAS  Google Scholar 

  16. Kiselar JG, Downard KM (2000) Preservation and detection of specific antibody-peptide complexes by matrix-assisted laser desorption ionization mass spectrometry. J Am Soc Mass Spectrom 11:746–750

    Article  CAS  Google Scholar 

  17. Downard KM (2016) Indirect study of non-covalent protein complexes by MALDI mass spectrometry. Origins, advantages and applications of the “intensity-fading” approach. Mass Spectrom Rev 35:559–573

    Article  CAS  Google Scholar 

  18. Zhang WD, Evans DH (1991) Detection and identification of human influenza viruses by the polymerase chain reaction. J Virol Methods 33:165–189

    Article  CAS  Google Scholar 

  19. Wright KE, Wilson GA, Novosad D, Dimock C, Tan D, Weber JM (1995) Typing and subtyping of influenza viruses in clinical samples by PCR. J Clin Microbiol 133:1180–1184

    Google Scholar 

  20. Ruben FL, Jackson GG, Gotoff SP (1973) Humoral and cellular response in humans after immunization with influenza vaccine. Infect Immun 7:594–596

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wood JM (2002) Selection of influenza vaccine strains and developing pandemic vaccines. Vaccine 20:B40–B44

    Article  Google Scholar 

  22. Kodihalli S, Justewicz DM, Gubareva LV, Webster RG (1995) Selection of a single amino acid substitution in the hemagglutinin molecule by chicken eggs can render influenza a virus (H3) candidate vaccine ineffective. J Virol 69:4888–4897

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Julkunen I, Pyhala R, Hovi T (1985) Enzyme immunoassay, complement fixation and hemagglutination inhibition tests in the diagnosis of influenza a and B virus infections. Purified hemagglutinin in subtype-specific diagnosis. J Virol Methods 10:75–84

    Article  CAS  Google Scholar 

  24. Medeiros R, Escriou N, Naffakh N, Manuguerra JC, van der Werf S (2001) Hemagglutinin residues of recent human a(H3N2) influenza viruses that contribute to the inability to agglutinate chicken erythrocytes. Virology 289:74–85

    Article  CAS  Google Scholar 

  25. Li J, Chen S, Evans DH (2001) Typing and subtyping influenza virus using DNA microarrays and multiplex reverse transcriptase PCR. J Clin Microbiol 39:696–704

    Article  CAS  Google Scholar 

  26. O’Connell J (ed) (2002) RT-PCR protocols, Methods in Molecular Biology, vol 193. Humana Press, NJ

    Google Scholar 

  27. Poddar SK (2002) Influenza virus types and subtypes detection by single step single tube multiplex reverse transcription-polymerase chain reaction (RT-PCR) and agarose gel electrophoresis. J Virol Methods 99:63–70

    Article  CAS  Google Scholar 

  28. Yang J-R, Kuo C-Y, Huang H-Y, Wu F-T, Huang Y-L, Cheng C-Y, Su Y-T, Chang F-Y, Wu H-S, Liu M-S (2014) Newly emerging mutations in the matrix genes of the human influenza a(H1N1)pdm09 and a(H3N2) viruses reduce the detection sensitivity of real-time reverse transcription-PCR. J Clin Microbiol 52:76–82

    Article  CAS  Google Scholar 

  29. Shu Y, McCauley JM (2017) GISAID: global initiative on sharing all influenza data – from vision to reality. Euro Surveill 22:30494

    Article  Google Scholar 

  30. Schwahn AB, Wong JWH, Downard KM (2009) Subtyping of the influenza virus by high resolution mass spectrometry. Anal Chem 81:3500–3506

    Article  CAS  Google Scholar 

  31. Schwahn AB, Wong JWH, Downard KM (2009) Signature peptides of influenza nucleoprotein for the typing and subtyping of the virus by high resolution mass spectrometry. Analyst 134:2253–2261

    Article  CAS  Google Scholar 

  32. Schwahn AB, Wong JWH, Downard KM (2010) Typing of human and animal strains of influenza virus with conserved signature peptides of matrix M1 protein by high resolution mass spectrometry. J Virol Methods 165:178–185

    Article  CAS  Google Scholar 

  33. Nguyen AP, Downard KM (2013) Subtyping of influenza neuraminidase using mass spectrometry. Analyst 138:1787–1793

    Article  CAS  Google Scholar 

  34. Schwahn AB, Downard KM (2011) Proteotyping to establish the lineage of type a H1N1 and type B human influenza virus. J Virol Methods 171:117–122

    Article  CAS  Google Scholar 

  35. Schwahn AB, Wong JWH, Downard KM (2010) Rapid differentiation of seasonal and pandemic H1N1 influenza through proteotyping of viral neuraminidase with mass spectrometry. Anal Chem 82:4584–4590

    Article  CAS  Google Scholar 

  36. Wong JWH, Schwahn AB, Downard KM (2010) FluTyper-an algorithm for automated typing and subtyping of the influenza virus from high resolution mass spectral data. BMC Bioinformatics 11:266

    Article  Google Scholar 

  37. Lun ATL, Wong JWH, Downard KM (2012) FluShuffle and FluResort-new algorithms to identify Reassorted strains of the influenza virus by mass spectrometry. BMC Bioinformatics 13:208

    Article  Google Scholar 

  38. Ho JWK, Morrissey B, Downard KM (2007) A computer algorithm for the identification of protein interactions from the spectra of masses (PRISM). J Am Soc Mass Spectrom 18:563–566

    Article  CAS  Google Scholar 

  39. Pappin DJC, Hojrup P, Bleasby AJ (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3:327–332

    Article  CAS  Google Scholar 

  40. Mackun K, Downard KM (2003) Strategy for identifying protein-protein interactions of gel-separated proteins and complexes by mass spectrometry. Anal Biochem 318:60–70

    Article  CAS  Google Scholar 

  41. Sheshberadaran H, Payne LG (1988) Protein antigen– monoclonal antibody contact sites investigated by limited proteolysis of monoclonal antibody-bound antigen: protein “footprinting”. Proc Natl Acad Sci 85:1–5

    Article  CAS  Google Scholar 

  42. Downard KM (2004) Tandem mass spectrometry. In: Mass spectrometry – a foundation course, chapter 4. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  43. Schwahn AB, Downard KM (2009) Antigenicity of a type a influenza virus through a comparison of hemagglutination inhibition and mass spectrometry immunoassays. J Immunoassay Immunochem 30:245–261

    Article  CAS  Google Scholar 

  44. Morrissey B, Downard KM (2008) Kinetics of antigen-antibody interactions employing a MALDI mass spectrometry immunoassay. Anal Chem 80:7720–7726

    Article  CAS  Google Scholar 

  45. Downard KM, Morrissey B (2007) Fingerprinting a killer-surveillance of the influenza virus by mass spectrometry. Analyst 132:611–614

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Downard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Downard, K.M. (2019). A Molecular Immunoproteomics Approach to Assess the Viral Antigenicity of Influenza. In: Fulton, K., Twine, S. (eds) Immunoproteomics. Methods in Molecular Biology, vol 2024. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9597-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9597-4_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9596-7

  • Online ISBN: 978-1-4939-9597-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics