Skip to main content

Construction and Isolation of Recombinant Vaccinia Virus Expressing Fluorescent Proteins

  • Protocol
  • First Online:
Vaccinia Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2023))

Abstract

Vaccinia virus recombinants that express fluorescent proteins have a variety of applications such as the identification of infected cells, efficient screening for genetically modified strains, and molecular characterization of virus replication and spread. The detection of fluorescent proteins and viral–fluorescent fusion proteins by fluorescence microscopy is noninvasive and can be used to describe protein localization in live cells and track the intracellular movement of virus particles. This chapter describes a number of approaches for the construction of plasmids and subsequent generation and isolation of fluorescent recombinant viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ball LA (1987) High-frequency homologous recombination in vaccinia virus DNA. J Virol 61:1788–1795

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ball LA (1995) Fidelity of homologous recombination in vaccinia virus DNA. Virology 209:688–691

    Article  CAS  PubMed  Google Scholar 

  3. Lorenzo MM, Galindo I, Blasco R (2004) Construction and isolation of recombinant vaccinia virus using genetic markers. Methods Mol Biol 269:15–30

    CAS  PubMed  Google Scholar 

  4. Smith GL, Moss B (1983) Infectious poxvirus vectors have capacity for at least 25 000 base pairs of foreign DNA. Gene 25:21–28

    Article  CAS  PubMed  Google Scholar 

  5. Moss B (1996) Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci U S A 93:11341–11348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lorenzo MM, Blasco R (1998) PCR-based method for the introduction of mutations in genes cloned and expressed in vaccinia virus. Biotechniques 24:308–313

    Article  CAS  PubMed  Google Scholar 

  7. Dominguez J, Lorenzo MM, Blasco R (1998) Green fluorescent protein expressed by a recombinant vaccinia virus permits early detection of infected cells by flow cytometry. J Immunol Methods 220:115–121

    Article  CAS  PubMed  Google Scholar 

  8. Geada MM, Galindo I, Lorenzo MM, Perdiguero B, Blasco R (2001) Movements of vaccinia virus intracellular enveloped virions with GFP tagged to the F13L envelope protein. J Gen Virol 82:2747–2760

    Article  CAS  PubMed  Google Scholar 

  9. Hollinshead M, Rodger G, Van Eijl H, Law M, Hollinshead R, Vaux DJ et al (2001) Vaccinia virus utilizes microtubules for movement to the cell surface. J Cell Biol 154:389–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ward BM, Moss B (2001) Visualization of intracellular movement of vaccinia virus virions containing a green fluorescent protein-B5R membrane protein chimera. J Virol 75:4802–4813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leite F, Way M (2015) The role of signalling and the cytoskeleton during Vaccinia Virus egress. Virus Res 209:87–99

    Article  CAS  PubMed  Google Scholar 

  12. Ward BM (2004) Pox, dyes, and videotape: making movies of GFP-labeled vaccinia virus. Methods Mol Biol 269:205–218

    PubMed  Google Scholar 

  13. Carter GC, Rodger G, Murphy BJ, Law M, Krauss O, Hollinshead M et al (2003) Vaccinia virus cores are transported on microtubules. J Gen Virol 84:2443–2458

    Article  CAS  PubMed  Google Scholar 

  14. Dobson BM, Procter DJ, Hollett NA, Flesch IE, Newsome TP, Tscharke DC (2014) Vaccinia virus F5 is required for normal plaque morphology in multiple cell lines but not replication in culture or virulence in mice. Virology 456–457:145–156

    Article  PubMed  Google Scholar 

  15. Schmidt FI, Bleck CK, Reh L, Novy K, Wollscheid B, Helenius A et al (2013) Vaccinia virus entry is followed by core activation and proteasome-mediated release of the immunomodulatory effector VH1 from lateral bodies. Cell Rep 4:464–476

    Article  CAS  PubMed  Google Scholar 

  16. Horsington J, Turnbull L, Whitchurch CB, Newsome TP (2012) Sub-viral imaging of vaccinia virus using super-resolution microscopy. J Virol Methods 186:132–136

    Article  CAS  PubMed  Google Scholar 

  17. Humphries AC, Dodding MP, Barry DJ, Collinson LM, Durkin CH, Way M (2012) Clathrin potentiates vaccinia-induced actin polymerization to facilitate viral spread. Cell Host Microbe 12:346–359

    Article  CAS  PubMed  Google Scholar 

  18. Gray RD, Beerli C, Pereira PM, Scherer KM, Samolej J, Bleck CK et al (2016) VirusMapper: open-source nanoscale mapping of viral architecture through super-resolution microscopy. Sci Rep 6:29,132

    Article  CAS  Google Scholar 

  19. Paszkowski P, Noyce RS, Evans DH (2016) Live-cell imaging of vaccinia virus recombination. PLoS Pathog 12:e1005824

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dower K, Rubins KH, Hensley LE, Connor JH (2011) Development of Vaccinia reporter viruses for rapid, high content analysis of viral function at all stages of gene expression. Antiviral Res 91:72–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yao XD, Evans DH (2001) Effects of DNA structure and homology length on vaccinia virus recombination. J Virol 75:6923–6932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coupar BE, Oke PG, Andrew ME (2000) Insertion sites for recombinant vaccinia virus construction: effects on expression of a foreign protein. J Gen Virol 81:431–439

    Article  CAS  PubMed  Google Scholar 

  23. Chakrabarti S, Brechling K, Moss B (1985) Vaccinia virus expression vector: coexpression of beta-galactosidase provides visual screening of recombinant virus plaques. Mol Cell Biol 5:3403–3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Panicali D, Grzelecki A, Huang C (1986) Vaccinia virus vectors utilizing the beta-galactosidase assay for rapid selection of recombinant viruses and measurement of gene expression. Gene 47:193–199

    Article  CAS  PubMed  Google Scholar 

  25. Falkner FG, Moss B (1990) Transient dominant selection of recombinant vaccinia viruses. J Virol 64:3108–3111

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Boyle DB, Coupar BE (1988) A dominant selectable marker for the construction of recombinant poxviruses. Gene 65:123–128

    Article  CAS  PubMed  Google Scholar 

  27. Byrd CM, Hruby DE (2004) Construction of recombinant vaccinia virus: cloning into the thymidine kinase locus. Methods Mol Biol 269:31–40

    CAS  PubMed  Google Scholar 

  28. Blasco R, Moss B (1995) Selection of recombinant vaccinia viruses on the basis of plaque formation. Gene 158:157–162

    Article  CAS  PubMed  Google Scholar 

  29. Wong YC, Lin LC, Melo-Silva CR, Smith SA, Tscharke DC (2011) Engineering recombinant poxviruses using a compact GFP-blasticidin resistance fusion gene for selection. J Virol Methods 171:295–298

    Article  CAS  PubMed  Google Scholar 

  30. Roscoe F, Xu RH, Sigal LJ (2012) Characterization of ectromelia virus deficient in EVM036, the homolog of vaccinia virus F13L, and its application for rapid generation of recombinant viruses. J Virol 86:13501–13507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alejo A, Saraiva M, Ruiz-Arguello MB, Viejo-Borbolla A, de Marco MF, Salguero FJ et al (2009) A method for the generation of ectromelia virus (ECTV) recombinants: in vivo analysis of ECTV vCD30 deletion mutants. PLoS One 4:e5175

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lorenzo MM, Sanchez-Puig JM, Blasco R (2017) Vaccinia virus and Cowpox virus are not susceptible to the interferon-induced antiviral protein MxA. PLoS One 12:e0181459

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stewart TL, Wasilenko ST, Barry M (2005) Vaccinia virus F1L protein is a tail-anchored protein that functions at the mitochondria to inhibit apoptosis. J Virol 79:1084–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arakawa Y, Cordeiro JV, Schleich S, Newsome TP, Way M (2007) The release of vaccinia from infected cells requires RhoA-mDia modulation of cortical actin. Cell Host Microbe 1:227–240

    Article  CAS  PubMed  Google Scholar 

  35. Rodger G, Smith GL (2002) Replacing the SCR domains of vaccinia virus protein B5R with EGFP causes a reduction in plaque size and actin tail formation but enveloped virions are still transported to the cell surface. J Gen Virol 83:323–332

    Article  CAS  PubMed  Google Scholar 

  36. Davison AJ, Moss B (1989) Structure of vaccinia virus late promoters. J Mol Biol 210:771–784

    Article  CAS  PubMed  Google Scholar 

  37. Davison AJ, Moss B (1989) Structure of vaccinia virus early promoters. J Mol Biol 210:749–769

    Article  CAS  PubMed  Google Scholar 

  38. Chen X, Zaro JL, Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65:1357–1369

    Article  CAS  PubMed  Google Scholar 

  39. Klein JS, Jiang S, Galimidi RP, Keeffe JR, Bjorkman PJ (2014) Design and characterization of structured protein linkers with differing flexibilities. Protein Eng Des Sel 27:325–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887–2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  PubMed  Google Scholar 

  42. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  CAS  PubMed  Google Scholar 

  43. Carpentier DCJ, Hollinshead MS, Ewles HA, Lee SA, Smith GL (2017) Tagging of the vaccinia virus protein F13 with mCherry causes aberrant virion morphogenesis. J Gen Virol

    Google Scholar 

  44. Bindels DS, Haarbosch L, van Weeren L, Postma M, Wiese KE, Mastop M et al (2017) mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat Methods 14:53–56

    Article  CAS  PubMed  Google Scholar 

  45. Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88

    Article  CAS  PubMed  Google Scholar 

  46. Chakrabarti S, Sisler JR, Moss B (1997) Compact, synthetic, vaccinia virus early/late promoter for protein expression. Biotechniques 23:1094–1097

    Article  CAS  PubMed  Google Scholar 

  47. Di Pilato M, Sanchez-Sampedro L, Mejias-Perez E, Sorzano CO, Esteban M (2015) Modification of promoter spacer length in vaccinia virus as a strategy to control the antigen expression. J Gen Virol 96:2360–2371

    Article  PubMed  Google Scholar 

  48. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M et al (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marzook NB, Latham SL, Lynn H, McKenzie C, Chaponnier C, Grau GE et al (2017) Divergent roles of beta- and gamma-actin isoforms during spread of vaccinia virus. Cytoskeleton (Hoboken) 74:170–183

    Article  CAS  Google Scholar 

  50. Dodding M, Newsome TP, Collinson L, Edwards C, Way M (2009) An E2-F12 complex is required for IEV morphogenesis during vaccinia infection. Cell Microbiol 11:808–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weisswange I, Newsome TP, Schleich S, Way M (2009) The rate of N-WASP exchange limits the extent of Arp2/3 complex dependent actin-based motility. Nature 458:87–91

    Article  CAS  PubMed  Google Scholar 

  52. Marzook NB, Procter DJ, Lynn H, Yamamoto Y, Horsington J, Newsome TP (2014) Methodology for the efficient generation of fluorescently tagged vaccinia virus proteins. J Vis Exp:e51151

    Google Scholar 

  53. Kotwal GJ, Abrahams MR (2004) Growing poxviruses and determining virus titer. Methods Mol Biol 269:101–112

    CAS  PubMed  Google Scholar 

  54. Roper RL (2004) Rapid preparation of vaccinia virus DNA template for analysis and cloning by PCR. Methods Mol Biol 269:113–118

    CAS  PubMed  Google Scholar 

  55. Yuan M, Zhang W, Wang J, Al Yaghchi C, Ahmed J, Chard L et al (2015) Efficiently editing the vaccinia virus genome by using the CRISPR-Cas9 system. J Virol 89:5176–5179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy P. Newsome .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marzook, N.B., Newsome, T.P. (2019). Construction and Isolation of Recombinant Vaccinia Virus Expressing Fluorescent Proteins. In: Mercer, J. (eds) Vaccinia Virus. Methods in Molecular Biology, vol 2023. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9593-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9593-6_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9592-9

  • Online ISBN: 978-1-4939-9593-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics