Skip to main content

Simple, Rapid Preparation of Poxvirus DNA for PCR Cloning and Analysis

  • Protocol
  • First Online:
Vaccinia Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2023))

Abstract

This chapter describes the simple, rapid, and inexpensive preparation of template DNA from poxvirus-infected cells, plaques, or crude virus stocks for PCR amplification. This technique is reliable and robust and only requires centrifugation, detergent, and protease treatment. The resulting DNA template preparation is suitable for PCR amplification for screening viruses, cloning, transfection, and DNA sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahalingam S, Damon IK, Lidbury BA (2004) 25 years since the eradication of smallpox: why poxvirus research is still relevant. Trends Immunol 25:636–639

    Article  CAS  PubMed  Google Scholar 

  2. Chen N, Li G, Liszewski MK, Atkinson JP, Jahrling PB, Feng Z et al (2005) Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Biochemistry 340:46–63

    CAS  Google Scholar 

  3. McCollum AM, Damon IK (2013) Human Monkeypox. Oxford University Press. Clin Infect Dis cit703

    Google Scholar 

  4. Lederman ER, Reynolds MG, Karem K, Braden Z, Learned-Orozco LA, Wassa-Wassa D et al (2007) Prevalence of antibodies against orthopoxviruses among residents of Likouala region, Republic of Congo: evidence for monkeypox virus exposure. Am J Trop Med Hyg 77:1150–1156

    Article  PubMed  Google Scholar 

  5. Lewis-Jones S (2004) Zoonotic poxvirus infections in humans. Curr Opin Infect Dis 17:81–89

    Article  PubMed  Google Scholar 

  6. Molino AC, Fleischer AB, Feldman SR (2004) Patient demographics and utilization of health care services for molluscum contagiosum. Pediatr Dermatol 21:628–632. Blackwell Science Inc

    Article  PubMed  Google Scholar 

  7. Senkevich TG, Koonin EV, Bugert JJ, Darai G, Moss B (1997) The genome of molluscum contagiosum virus: analysis and comparison with other poxviruses. Biochemistry 233:19–42

    CAS  Google Scholar 

  8. Shchelkunov SN (2013) An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathog 9:e1003756. (G F Rall, Ed.) Public Library of Science

    Article  PubMed  PubMed Central  Google Scholar 

  9. Damaso CR, Esposito JJ, Condit RC, Moussatché N (2000) An emergent poxvirus from humans and cattle in Rio de Janeiro State: Cantagalo virus may derive from Brazilian smallpox vaccine. Biochemistry 277:439–449

    CAS  Google Scholar 

  10. Oliveira DB, Assis FL, Ferriera PCP, Bonjardim CA, de Souza Trindade G, Kroon EG et al (2013) Group 1 vaccinia virus zoonotic outbreak in Maranhao State, Brazil. Am J Trop Med Hyg 89:1142–1145

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dhar AD, Werchniak AE, Li Y, Brennick JB, Goldsmith CS, Kline R et al (2004) Tanapox infection in a college student. N Engl J Med 350:361–366

    Article  CAS  PubMed  Google Scholar 

  12. Stich A, Meyer H, Köhler B, Fleischer K (2002) Tanapox: first report in a European traveller and identification by PCR. Trans R Soc Trop Med Hyg 96:178–179

    Article  PubMed  Google Scholar 

  13. Kolhapure RM, Deolankar RP, Tupe CD, Raut CG, Basu A, Dama BM et al (1997) Investigation of buffalopox outbreaks in Maharashtra State during 1992-1996. Indian J Med Res 106:441–446

    CAS  PubMed  Google Scholar 

  14. Campbell CT, Gulley JL, Oyelaran O, Hodge JW, Schlom J, Gildersleeve JC (2013) Serum antibodies to blood group A predict survival on PROSTVAC-VF. Clin Cancer Res 19:1290–1299. American Association for Cancer Research

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hui EP, Taylor GS, Jia H, Ma BB, Chan SL, Ho R et al (2013) Phase I trial of recombinant modified vaccinia Ankara encoding Epstein-Barr viral tumor antigens in nasopharyngeal carcinoma patients. Cancer Res 73:1676–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gómez CE, Nájera JL, Krupa M, Esteban M (2008) The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer. Curr Gene Ther 8:97–120

    Article  PubMed  Google Scholar 

  17. Rahal A, Musher B (2017) Oncolytic viral therapy for pancreatic cancer. J Surg Oncol 116(1):94–103

    Article  PubMed  Google Scholar 

  18. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R et al (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361:2209–2220

    Article  CAS  PubMed  Google Scholar 

  19. Tscharke DC, Karupiah G, Zhou J, Palmore T, Irvine KR, Haeryfar SM et al (2005) Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. J Exp Med 201:95–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Belyakov IM, Earl P, Dzutsev A, Kuznetsov VA, Lemon M, Wyatt LS et al (2003) Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc Natl Acad Sci U S A 100:9458–9463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Earl PL, Americo JL, Wyatt LS, Eller LA, Whitbeck JC, Cohen GH et al (2004) Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 428:182–185

    Article  CAS  PubMed  Google Scholar 

  22. Graham JH, Graham VA, Bewley KR, Tree JA, Dennis M, Taylor I et al (2013) Assessment of the protective effect of Imvamune and Acam2000 Vaccines against aerosolized monkeypox virus in cynomolgus macaques. J Virol 87:7805–7815

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guzman E, Cubillos-Zapata C, Cottingham MG, Gilbert SC, Prentice H, Charleston B et al (2012) Modified vaccinia virus Ankara-based vaccine vectors induce apoptosis in dendritic cells draining from the skin via both the extrinsic and intrinsic caspase pathways, preventing efficient antigen presentation. J Virol 86:5452–5466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Evgin L, Vaha-Koskela M, Rintoul J, Falls T, Le Boeuf F, Barrett JW et al (2010) Potent oncolytic activity of raccoonpox virus in the absence of natural pathogenicity. Mol Ther 18:896–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jones GJB, Boles C, Roper RL (2014) Raccoonpox virus safety in immunocompromised and pregnant mouse models. Vaccine 32:3977–3981

    Article  PubMed  Google Scholar 

  26. Fleischauer C, Upton C, Victoria J, Jones GJ, Roper RL et al (2015) Genome sequence and comparative virulence of raccoonpox virus: the first North American poxvirus sequence. J Gen Virol 96:2806–2821

    Article  CAS  PubMed  Google Scholar 

  27. Roper RL (2017) Poxvirus Safety analysis in the pregnant mouse model, vaccinia, and raccoonpox viruses. Methods Mol Biol 1581:121–129

    Article  CAS  PubMed  Google Scholar 

  28. Joklik WK, Becker Y (1964) The replication and coating of vaccinia DNA. J Mol Biol 10:452–474

    Article  CAS  PubMed  Google Scholar 

  29. Erlich HA (ed) (1989) PCR technology: principles and applications for DNA amplification. M Stockton Press, New York

    Google Scholar 

  30. Sung TC, Roper RL, Zhang Y, Rudge SA, Temel R, Hammond SM et al (1997) Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. EMBO J 16:4519–4530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roper RL, Moss B (1999) Envelope formation is blocked by mutation of a sequence related to the HKD phospholipid metabolism motif in the vaccinia virus F13L protein. J Virol 73:1108–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Roper RL, Wolffe EJ, Weisberg A, Moss B (1998) The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell to cell spread of vaccinia virus. J Virol 72:4192–4204

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wolffe EJ, Katz E, Weisberg A, Moss B (1997) The A34R glycoprotein gene is required for induction of specialized actin-containing microvilli and efficient cell-to-cell transmission of vaccinia virus. J Virol 71:3904–3915

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Roper RL, Payne LG, Moss B (1996) Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J Virol 70:3753–3762

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rehm KE, Roper RL (2011) Deletion of the A35 gene from Modified Vaccinia Virus Ankara Increases Immunogenicity and Isotype Switching. Vaccine 29:3276–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roper RL (2004) Rapid preparation of vaccinia virus DNA template for analysis and cloning by PCR. Methods Mol Biol 269:113–118

    CAS  PubMed  Google Scholar 

  37. Zervos E, Agle S, Freistaedter AG, Jones GJ, Roper RL (2016) Murine mesothelin: characterization, expression, and analysis of growth and tumorigenic effects in a murine model of pancreatic cancer. J Exp Clin Cancer Res 35:39

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rehm KE, Jones GJB, Tripp AA, Metcalf MW, Roper RL (2010) The poxvirus A35 protein is an immunoregulator. J Virol 84(1):418–425

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel L. Roper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Roper, R.L. (2019). Simple, Rapid Preparation of Poxvirus DNA for PCR Cloning and Analysis. In: Mercer, J. (eds) Vaccinia Virus. Methods in Molecular Biology, vol 2023. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9593-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9593-6_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9592-9

  • Online ISBN: 978-1-4939-9593-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics