Skip to main content

Assessing Autophagy During Retinoid Treatment of Breast Cancer Cells

  • Protocol
  • First Online:
Retinoid and Rexinoid Signaling

Abstract

Retinoids are derived from vitamin A through a multi-step process. Within a target cell, retinoids regulate gene expression by activating the retinoid acid receptors (RAR) and retinoid x receptors (RXR), which are ligand-dependent transcription factors. Besides its therapeutic use in dermatological disorders, all-trans retinoic acid (ATRA) is successfully utilized to treat acute promyelocytic leukemia (APL) patients. The use of ATRA in APL patients is the first example of clinically useful differentiation therapy. Therapeutic strategies aiming at cancer cell differentiation have great potential for solid tumors, including breast cancer. The few clinical studies conducted with ATRA in breast cancer are rather disappointing. However, these studies did not take into account the heterogeneity of the disease and were conducted on unselected cohorts of patients.

We recently showed that ATRA treatment of breast cancer cells induces autophagy, a highly conserved process aiming at degrading and recycling superfluous or harmful cellular components. In addition, autophagy inhibition significantly increases the therapeutic activity of ATRA. This finding is of fundamental importance, since autophagy has a dual role in cancer. Whereas autophagy may be a protective mechanism during the initial phases of cancer development, it may support cancer cell survival in already established tumors. Furthermore, autophagy can lower or enhance therapeutic efficiency, depending on the tumor type and the anticancer agent considered. Therefore, it is important to investigate the role of autophagy in the context of specific tumors and therapeutic approaches. Accurate autophagy studies are challenging given the dynamic nature of the process and the difficulty of measuring the rate of autophagosome degradation (autophagic flux). In this chapter, we provide protocols for a careful assessment of the autophagic flux in ATRA treated 2D and 3D breast cancer cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang X-H, Gudas LJ (2011) Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol 6:345–364

    Article  CAS  Google Scholar 

  2. Theodosiou M, Laudet V, Schubert M (2010) From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol Life Sci 67:1423–1445

    Article  CAS  Google Scholar 

  3. Bushue N, Wan Y-JY (2010) Retinoid pathway and cancer therapeutics. Adv Drug Deliv Rev 62:1285–1298

    Article  CAS  Google Scholar 

  4. Niles RM (2000) Recent advances in the use of vitamin a (retinoids) in the prevention and treatment of cancer. Nutrition 16:1084–1089

    Article  CAS  Google Scholar 

  5. de Thé H (2018) Differentiation therapy revisited. Nat Rev Cancer 18:117–127

    Article  Google Scholar 

  6. Pattabiraman DR, Weinberg RA (2016) Targeting the epithelial-to-mesenchymal transition: the case for differentiation-based therapy. Cold Spring Harb Symp Quant Biol 81:11–19

    Article  Google Scholar 

  7. Di Leo A, Curigliano G, Diéras V et al (2015) New approaches for improving outcomes in breast cancer in Europe. Breast 24:321–330

    Article  Google Scholar 

  8. Chen K, Huang Y, Chen J (2013) Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 34:732–740

    Article  CAS  Google Scholar 

  9. Zanetti A et al (2015) All-trans-retinoic acid modulates the plasticity and inhibits the motility of breast cancer cells: role of Notch1 and transforming growth factor (TGFβ). J Biol Chem 290(29):17690–17709

    Article  CAS  Google Scholar 

  10. Ginestier C, Wicinski J, Cervera N et al (2009) Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle 8:3297–3302

    Article  CAS  Google Scholar 

  11. Garattini E, Paroni G, Terao M (2012) Retinoids and breast cancer: new clues to increase their activity and selectivity. Breast Cancer Res 14:111

    Article  CAS  Google Scholar 

  12. Centritto F, Paroni G, Bolis M et al (2015) (2015) cellular and molecular determinants of all-trans retinoic acid sensitivity in breast cancer: luminal phenotype and RARα expression. EMBO Mol Med 7(7):950–972

    Article  CAS  Google Scholar 

  13. Brigger D, Schläfli AM, Garattini E et al (2015) Activation of RARα induces autophagy in SKBR3 breast cancer cells and depletion of key autophagy genes enhances ATRA toxicity. Cell Death Dis 6:e1861

    Article  CAS  Google Scholar 

  14. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364

    Article  CAS  Google Scholar 

  15. Tanida I (2011) Autophagy basics. Microbiol Immunol 55:1–11

    Article  CAS  Google Scholar 

  16. Cecconi F, Levine B (2008) The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 15:344–357

    Article  CAS  Google Scholar 

  17. Mizushima N, Levine B, Cuervo AM et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  Google Scholar 

  18. Guo JY, White E (2016) Autophagy, metabolism, and cancer. Cold Spring Harb Symp Quant Biol 81:73–78

    Article  Google Scholar 

  19. Amaravadi R, Kimmelman AC, White E (2016) Recent insights into the function of autophagy in cancer. Genes Dev 30:1913–1930

    Article  CAS  Google Scholar 

  20. Chen H-Y, White E (2011) Role of autophagy in cancer prevention. Cancer Prev Res (Phila) 4:973–983

    Article  CAS  Google Scholar 

  21. Strohecker AM, White E (2014) Autophagy promotes BrafV600E-driven lung tumorigenesis by preserving mitochondrial metabolism. Autophagy 10:384–385

    Article  CAS  Google Scholar 

  22. Guo JY, White E (2013) Autophagy is required for mitochondrial function, lipid metabolism, growth, and fate of KRASG12D-driven lung tumors. Autophagy 9:1636–1638

    Article  CAS  Google Scholar 

  23. Degenhardt K, Mathew R, Beaudoin B et al (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51–64

    Article  CAS  Google Scholar 

  24. Guo JY, Chen H-Y, Mathew R et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25:460–470

    Article  CAS  Google Scholar 

  25. Thorburn A, Thamm DH, Gustafson DL (2014) Autophagy and cancer therapy. Mol Pharmacol 85:830–838

    Article  Google Scholar 

  26. Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17:528–542

    Article  CAS  Google Scholar 

  27. Klionsky DJ, Abdalla FC, Abeliovich H et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544

    Article  CAS  Google Scholar 

  28. Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221:117–124

    Article  CAS  Google Scholar 

  29. Loos B, du TA, Hofmeyr J-HS (2014) Defining and measuring autophagosome flux—concept and reality. Autophagy 10:2087–2096

    Article  Google Scholar 

  30. Klionsky DJ, Abdelmohsen K, Abe A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222

    Article  Google Scholar 

  31. Kabeya Y (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  Google Scholar 

  32. Chu CT, Plowey ED, Dagda RK et al (2009) Autophagy in neurite injury and neurodegeneration: in vitro and in vivo models. Methods Enzymol 453:217–249

    Article  CAS  Google Scholar 

  33. Gump JM, Thorburn A (2014) Sorting cells for basal and induced autophagic flux by quantitative ratiometric flow cytometry. Autophagy 10:1327–1334

    Article  Google Scholar 

  34. Hirt C, Papadimitropoulos A, Muraro MG et al (2015) Bioreactor-engineered cancer tissue-like structures mimic phenotypes, gene expression profiles and drug resistance patterns observed “in vivo”. Biomaterials 62:138–146

    Article  CAS  Google Scholar 

  35. Berezowska S, Galván JA (2017) Immunohistochemical detection of the autophagy markers LC3 and p62/SQSTM1 in formalin-fixed and paraffin-embedded tissue. In: Pellicciari C, Biggiogera M (eds) Histochemistry of single molecules: methods and protocols. Springer, New York, NY, pp 189–194

    Chapter  Google Scholar 

  36. Dupont N, Leroy C, Hamaï A et al (2017) Chapter 3: long-lived protein degradation during autophagy. In: Galluzzi L, Bravo-San Pedro JM, Kroemer G (eds) Methods in enzymology. Academic Press, Cambridge, MA, pp 31–40

    Google Scholar 

  37. Luhr M, Szalai P, Engedal N (2018) The lactate dehydrogenase sequestration assay—a simple and reliable method to determine bulk autophagic sequestration activity in mammalian cells. J Vis Exp 137:e57971

    Google Scholar 

  38. Katayama H, Kogure T, Mizushima N et al (2011) A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 18:1042–1052

    Article  CAS  Google Scholar 

  39. Engedal N, Seglen PO (2016) Autophagy of cytoplasmic bulk cargo does not require LC3. Autophagy 12:439–441

    Article  CAS  Google Scholar 

  40. Ra E, Lee S, Park B (2015) Possible roles of LC3-independent autophagy in elimination of Shigella in human colon cells (INC4P.343). J Immunol 194(1 Supplement):125.22

    Google Scholar 

  41. Birgisdottir ÅB, Lamark T, Johansen T (2013) The LIR motif—crucial for selective autophagy. J Cell Sci 126:3237–3247

    CAS  PubMed  Google Scholar 

  42. Ichimura Y, Komatsu M (2010) Selective degradation of p62 by autophagy. Semin Immunopathol 32:431–436

    Article  Google Scholar 

  43. Trocoli A, Bensadoun P, Richard E et al (2014) p62/SQSTM1 upregulation constitutes a survival mechanism that occurs during granulocytic differentiation of acute myeloid leukemia cells. Cell Death Differ 21:1852–1861

    Article  CAS  Google Scholar 

  44. Zois CE, Giatromanolaki A, Sivridis E et al (2011) “Autophagic flux” in normal mouse tissues: focus on endogenous LC3A processing. Autophagy 7:1371–1378

    Article  CAS  Google Scholar 

  45. Martinet W, Schrijvers DM, Timmermans J-P et al (2013) Immunohistochemical analysis of macroautophagy: recommendations and limitations. Autophagy 9:386–402

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Deborah Shan-Krauer is gratefully acknowledged for excellent technical support. This research project was supported by the University of Bern Initiator Grant and grants from the Bernese Cancer League, the Werner and the Hedy Berger-Janser Foundation for Cancer Research (to A.M.S.) and Swiss Cancer Research (KFS-3409-02-2014 to M.P.T.).

Conflict of Interest: Manuele G. Muraro is a shareholder and scientific advisor of Cellec Biotek AG. Giulio C. Spagnoli is a Cellec Biotek AG shareholder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Schläfli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Parejo, S., Tschan, M.P., Muraro, M.G., Garattini, E., Spagnoli, G.C., Schläfli, A.M. (2019). Assessing Autophagy During Retinoid Treatment of Breast Cancer Cells. In: Ray, S. (eds) Retinoid and Rexinoid Signaling . Methods in Molecular Biology, vol 2019. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9585-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9585-1_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9584-4

  • Online ISBN: 978-1-4939-9585-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics