Skip to main content

Behavioral Genetic Studies in Rats

  • Protocol
  • First Online:
Rat Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2018))

Abstract

In this chapter, we briefly review the use of rats as a genetic model for the study of behavior. Rats were the first mammalian species used for genetic and biological research. Since the development of the first inbred rat strain in 1909, more than 700 unique inbred and outbred rat lines have been generated. Although rats have been somewhat eclipsed by mice in the last few decades, a renewed appreciation of the advantages of rats for behavioral and other types of research is upon us. We briefly review the pertinent characteristics of the rat and highlight the key advantages of using the rat to examine behavioral phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindsey JR (1979) Historical foundations in the laboratory rat. In: The laboratory rat, vol 1. Academic Press, New York, pp 1–36

    Google Scholar 

  2. Yamada J, Nikaido H, Matsumoto S (1979) Genetic variability within and between outbred Wistar strains of rats. Jikken Dobutsu 28(2):259–265

    CAS  PubMed  Google Scholar 

  3. Delves PJ, Roitt IM (1998) Encyclopedia of immunology, 2nd edn. Academic Press, San Diego, p 4

    Google Scholar 

  4. Shepard JF (1933) Higher processes in the behavior of rats. Proc Natl Acad Sci U S A 19:149–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hall C, Ballachey EL (1932) A study of the rat’s behavior in a field. A contribution to method in comparative psychology, University of California publications in psychology, vol 6. University of California Press, Berkeley, CA, pp 1–12

    Google Scholar 

  6. Gordon JW, Ruddle FH (1981) Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 214(4526):1244–1246

    Article  CAS  PubMed  Google Scholar 

  7. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512

    Article  CAS  PubMed  Google Scholar 

  8. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562

    Article  CAS  PubMed  Google Scholar 

  9. Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS et al (2004) The knockout mouse project. Nat Genet 36(9):921–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Munoz-Fuentes V, Cacheiro P, Meehan TF, Aguilar-Pimentel J, Brown SDM, Flenniken AM et al (2018) The International Mouse Phenotyping Consortium (IMPC): a functional catalogue of the mammalian genome that informs conservation. Conserv Genet 19(4):995–1005

    Article  PubMed  PubMed Central  Google Scholar 

  11. Parker CC, Chen H, Flagel SB, Geurts AM, Richards JB, Robinson TE et al (2014) Rats are the smart choice: rationale for a renewed focus on rats in behavioral genetics. Neuropharmacology 76(Pt B):250–258

    Article  CAS  PubMed  Google Scholar 

  12. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428(6982):493–521

    Article  CAS  PubMed  Google Scholar 

  13. Mullins LJ, Mullins JJ (2004) Insights from the rat genome sequence. Genome Biol 5(5):221

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zan Y, Haag JD, Chen KS, Shepel LA, Wigington D, Wang YR et al (2003) Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nat Biotechnol 21(6):645–651

    Article  CAS  PubMed  Google Scholar 

  15. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29(1):64–67

    Article  CAS  PubMed  Google Scholar 

  17. Tong C, Huang G, Ashton C, Li P, Ying QL (2011) Generating gene knockout rats by homologous recombination in embryonic stem cells. Nat Protoc 6(6):827–844

    Article  CAS  PubMed  Google Scholar 

  18. Shao Y, Guan Y, Wang L, Qiu Z, Liu M, Chen Y et al (2014) CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat Protoc 9(10):2493–2512

    Article  CAS  PubMed  Google Scholar 

  19. Kjell J, Olson L (2016) Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 9(10):1125–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meijer MK, Sommer R, Spruijt BM, van Zutphen LF, Baumans V (2007) Influence of environmental enrichment and handling on the acute stress response in individually housed mice. Lab Anim 41(2):161–173

    Article  CAS  PubMed  Google Scholar 

  21. Feduccia AA, Duvauchelle CL (2010) Novel apparatus and method for drug reinforcement. J Vis Exp. https://doi.org/10.3791/1998

  22. Kokare DM, Shelkar GP, Borkar CD, Nakhate KT, Subhedar NK (2011) A simple and inexpensive method to fabricate a cannula system for intracranial injections in rats and mice. J Pharmacol Toxicol Methods 64(3):246–250

    Article  CAS  PubMed  Google Scholar 

  23. Barandov A, Bartelle BB, Gonzalez BA, White WL, Lippard SJ, Jasanoff A (2016) Membrane-permeable Mn(III) complexes for molecular magnetic resonance imaging of intracellular targets. J Am Chem Soc 138(17):5483–5486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zimmer ER, Leuzy A, Bhat V, Gauthier S, Rosa-Neto P (2014) In vivo tracking of tau pathology using positron emission tomography (PET) molecular imaging in small animals. Transl Neurodegener 3(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim HY, Seo K, Jeon HJ, Lee U, Lee H (2017) Application of functional near-infrared spectroscopy to the study of brain function in humans and animal models. Mol Cells 40(8):523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Febo M (2011) Technical and conceptual considerations for performing and interpreting functional MRI studies in awake rats. Front Psychiatry 2:43

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hirst WD, Abrahamsen B, Blaney FE, Calver AR, Aloj L, Price GW et al (2003) Differences in the central nervous system distribution and pharmacology of the mouse 5-hydroxytryptamine-6 receptor compared with rat and human receptors investigated by radioligand binding, site-directed mutagenesis, and molecular modeling. Mol Pharmacol 64(6):1295–1308

    Article  CAS  PubMed  Google Scholar 

  28. Lazarov O, Hollands C (2016) Hippocampal neurogenesis: learning to remember. Prog Neurobiol 138–140:1–18

    Article  PubMed  PubMed Central  Google Scholar 

  29. Snyder JS, Radik R, Wojtowicz JM, Cameron HA (2009) Anatomical gradients of adult neurogenesis and activity: young neurons in the ventral dentate gyrus are activated by water maze training. Hippocampus 19(4):360–370

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stieglitz RD (2000) Diagnostic and statistical manual of mental disorders. Z Klin Psychol-Forsc 29(1):63–64

    Article  Google Scholar 

  31. Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305(5686):1014–1017

    Article  CAS  PubMed  Google Scholar 

  32. Wise RA (1996) Addictive drugs and brain stimulation reward. Annu Rev Neurosci 19:319–340

    Article  CAS  PubMed  Google Scholar 

  33. Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12(3–4):227–462

    Article  CAS  PubMed  Google Scholar 

  34. O’Connor EC, Chapman K, Butler P, Mead AN (2011) The predictive validity of the rat self-administration model for abuse liability. Neurosci Biobehav Rev 35(3):912–938

    Article  PubMed  CAS  Google Scholar 

  35. Panlilio LV, Goldberg SR (2007) Self-administration of drugs in animals and humans as a model and an investigative tool. Addiction 102(12):1863–1870

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ahmed SH, Koob GF (1999) Long-lasting increase in the set point for cocaine self-administration after escalation in rats. Psychopharmacology (Berl) 146(3):303–312

    Article  CAS  Google Scholar 

  37. Paterson NE, Markou A (2003) Increased motivation for self-administered cocaine after escalated cocaine intake. Neuroreport 14(17):2229–2232

    Article  CAS  PubMed  Google Scholar 

  38. Kippin TE, Fuchs RA, See RE (2006) Contributions of prolonged contingent and noncontingent cocaine exposure to enhanced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 187(1):60–67

    Article  CAS  Google Scholar 

  39. Vanderschuren LJ, Everitt BJ (2004) Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305(5686):1017–1019

    Article  CAS  PubMed  Google Scholar 

  40. Wise RA (1973) Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacologia 29(3):203–210

    Article  CAS  PubMed  Google Scholar 

  41. Wolffgramm J, Heyne A (1995) From controlled drug intake to loss of control: the irreversible development of drug addiction in the rat. Behav Brain Res 70(1):77–94

    Article  CAS  PubMed  Google Scholar 

  42. Heyne A, Wolffgramm J (1998) The development of addiction to d-amphetamine in an animal model: same principles as for alcohol and opiate. Psychopharmacology 140(4):510–518

    Article  CAS  PubMed  Google Scholar 

  43. Heyne A (1996) The development of opiate addiction in the rat. Pharmacol Biochem Behav 53(1):11–25

    Article  CAS  PubMed  Google Scholar 

  44. Vestal BM (1977) Sociability and individual distance in four species of rodents. Proc Oklahoma Acad Sci 57:98–102

    Google Scholar 

  45. Fritz M, El Rawas R, Klement S, Kummer K, Mayr MJ, Eggart V et al (2011) Differential effects of accumbens core vs. shell lesions in a rat concurrent conditioned place preference paradigm for cocaine vs. social interaction. PLoS One 6(10):e26761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kummer KK, Hofhansel L, Barwitz CM, Schardl A, Prast JM, Salti A et al (2014) Differences in social interaction- vs. cocaine reward in mouse vs. rat. Front Behav Neurosci 8:363

    Article  PubMed  PubMed Central  Google Scholar 

  47. Venniro M, Zhang M, Caprioli D, Hoots JK, Golden SA, Heins C et al (2018) Volitional social interaction prevents drug addiction in rat models. Nat Neurosci 21(11):1520–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moeller FG, Barratt ES, Dougherty DM, Schmitz JM, Swann AC (2001) Psychiatric aspects of impulsivity. Am J Psychiatry 158(11):1783–1793

    Article  CAS  PubMed  Google Scholar 

  49. Alessi SM, Petry NM (2003) Pathological gambling severity is associated with impulsivity in a delay discounting procedure. Behav Process 64(3):345–354

    Article  Google Scholar 

  50. Mitchell SH (1999) Measures of impulsivity in cigarette smokers and non-smokers. Psychopharmacology (Berl) 146(4):455–464

    Article  CAS  Google Scholar 

  51. Bickel WK, Marsch LA (2001) Toward a behavioral economic understanding of drug dependence: delay discounting processes. Addiction 96(1):73–86

    Article  CAS  PubMed  Google Scholar 

  52. Neef NA, Marckel J, Ferreri SJ, Bicard DF, Endo S, Aman MG et al (2005) Behavioral assessment of impulsivity: a comparison of children with and without attention deficit hyperactivity disorder. J Appl Behav Anal 38(1):23–37

    Article  PubMed  PubMed Central  Google Scholar 

  53. Winstanley CA (2011) The utility of rat models of impulsivity in developing pharmacotherapies for impulse control disorders. Br J Pharmacol 164(4):1301–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moreno M, Cardona D, Gómez MJ, Sánchez-Santed F, Tobeña A, Fernández-Teruel A et al (2010) Impulsivity characterization in the Roman high- and low-avoidance rat strains: behavioral and neurochemical differences. Neuropsychopharmacology 35(5):1198–1208

    Article  PubMed  PubMed Central  Google Scholar 

  55. Adriani W, Caprioli A, Granstrem O, Carli M, Laviola G (2003) The spontaneously hypertensive-rat as an animal model of ADHD: evidence for impulsive and non-impulsive subpopulations. Neurosci Biobehav Rev 27(7):639–651

    Article  PubMed  Google Scholar 

  56. Aparicio CF, Hennigan PJ, Mulligan LJ, Alonso-Alvarez B (2019) Spontaneously hypertensive (SHR) rats choose more impulsively than Wistar-Kyoto (WKY) rats on a delay discounting task. Behav Brain Res 364:480–493. https://doi.org/10.1016/j.bbr.2017.09.040

    Article  PubMed  Google Scholar 

  57. Richards JB, Zhang L, Mitchell SH, de Wit H (1999) Delay or probability discounting in a model of impulsive behavior: effect of alcohol. J Exp Anal Behav 71(2):121–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bushnell PJ (2001) Advanced behavioral testing in rodents: assessment of cognitive function in animals. Curr Protoc Toxicol Chapter 11:Unit 11.4

    Google Scholar 

  59. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  60. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858

    Article  PubMed  PubMed Central  Google Scholar 

  61. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36(1):60–90

    Article  PubMed  Google Scholar 

  62. Whishaw IQ, Tomie J (1996) Of mice and mazes: similarities between mice and rats on dry land but not water mazes. Physiol Behav 60(5):1191–1197

    Article  CAS  PubMed  Google Scholar 

  63. Colacicco G, Welzl H, Lipp HP, Wurbel H (2002) Attentional set-shifting in mice: modification of a rat paradigm, and evidence for strain-dependent variation. Behav Brain Res 132(1):95–102

    Article  PubMed  Google Scholar 

  64. Jaramillo S, Zador AM (2014) Mice and rats achieve similar levels of performance in an adaptive decision-making task. Front Syst Neurosci 8:173

    Article  PubMed  PubMed Central  Google Scholar 

  65. Prusky GT, West PW, Douglas RM (2000) Behavioral assessment of visual acuity in mice and rats. Vis Res 40(16):2201–2209

    Article  CAS  PubMed  Google Scholar 

  66. McLay RN, Freeman SM, Harlan RE, Kastin AJ, Zadina JE (1999) Tests used to assess the cognitive abilities of aged rats: their relation to each other and to hippocampal morphology and neurotrophin expression. Gerontology 45(3):143–155

    Article  CAS  PubMed  Google Scholar 

  67. Stubley-Weatherly L, Harding JW, Wright JW (1996) Effects of discrete kainic acid-induced hippocampal lesions on spatial and contextual learning and memory in rats. Brain Res 716(1–2):29–38

    Article  CAS  PubMed  Google Scholar 

  68. Jarrard LE (1993) On the role of the hippocampus in learning and memory in the rat. Behav Neural Biol 60(1):9–26

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham A. Palmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ren, Y., Palmer, A.A. (2019). Behavioral Genetic Studies in Rats. In: Hayman, G., Smith, J., Dwinell, M., Shimoyama, M. (eds) Rat Genomics. Methods in Molecular Biology, vol 2018. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9581-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9581-3_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9580-6

  • Online ISBN: 978-1-4939-9581-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics