Skip to main content

Enabling Hamster Embryo Culture System: Development of Preimplantation Embryos

  • Protocol
  • First Online:
Comparative Embryo Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2006))

Abstract

Development of preimplantation embryos, from fertilization to hatched-blastocyst stage, has been a challenging task, regardless of the mammalian species being studied. While the mouse model has been versatile for studying in vitro development of early embryos, other rodent species are important to gain insights into comparative early embryogenesis. The golden hamster (Mesocricetus auratus) offers unique advantages to study cellular and molecular regulation of gamete maturation, fertilization and preimplantation development, including the phenomenon of blastocyst hatching. Achieving in vitro fertilization and first cleavage division is relatively easy; however, subsequent development past the two-/four-cell stage had been difficult in hamsters. Pioneering research, carried out over three decades has markedly enabled successful in vitro development of one-cell embryos to blastocysts. This article provides a comprehensive perspective (historical and current) on the embryo culture systems and details an optimized culture protocols to achieve normal and viable development of preimplantation embryos in the golden hamster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polis CB, Cox CM, Tunçalp Ö, McLain AC, Thoma ME (2017) Estimating infertility prevalence in low-to-middle-income countries: an application of a current duration approach to Demographic and Health Survey data. Hum Reprod 32:1064–1074

    Article  Google Scholar 

  2. Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, Fogarty NNM, Campbell A, Devito L, Ilic D, Khalaf Y, Niakan KK, Fishel S, Zernicka-Goetz M (2016) Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol 18:700–708

    Article  CAS  Google Scholar 

  3. Kushnir VA, Barad DH, Albertini DF, Darmon SK, Gleicher N (2017) Systematic review of worldwide trends in assisted reproductive technology 2004–2013. Reprod Biol Endocrinol 15:1–9

    Article  Google Scholar 

  4. Bavister BD, Boatman DE, Collins K, Dierschke DJ, Eisele SG (1984) Birth of rhesus monkey infant after in vitro fertilization and nonsurgical embryo transfer. Proc Natl Acad Sci U S A 81:2218–2222

    Article  CAS  Google Scholar 

  5. Wolf DP (2004) Assisted reproductive technologies in rhesus macaques. Reprod Biol Endocrinol 2:37

    Article  Google Scholar 

  6. Simerly C, Schatten G (2012) Utility of animal models for human embryo culture: nonhuman primates. Methods Mol Biol 912:39–58

    CAS  PubMed  Google Scholar 

  7. Brinster RL (1963) A method for in vitro cultivation of mouse ova from two-cell to blastocyst. Exp Cell Res 32:205–207

    Article  CAS  Google Scholar 

  8. Chatot CK, Ziomek CA, Bavister BD, Lewis JL, Torres I (1989) An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J Reprod Fertil 86:361–368

    Google Scholar 

  9. Rossanth J (2016) Making the mouse blastocyst: past, present, and future. Curr Top Dev Biol 117:275–288

    Article  Google Scholar 

  10. Bavister BD, Leibfried ML, Lieberman G (1983) Development of preimplantation embryos of the golden hamster in a defined culture medium. Biol Reprod 28:235–247

    Article  CAS  Google Scholar 

  11. Bavister BD (1987) Studies on the developmental blocks in cultured hamster embryos. In: Bavister BD (ed) The mammalian preimplantation embryos: regulation of growth and differentiation in vitro. Plenum, New York, pp 219–249

    Chapter  Google Scholar 

  12. Bavister BD (1989) A consistently successful procedure for in vitro fertilization of Golden hamster eggs. Gamete Res 23:139–158

    Article  CAS  Google Scholar 

  13. Bavister BD (1995) Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update 1:91–148

    Article  CAS  Google Scholar 

  14. Kishi J, Noda Y, Narimoto K, Umaoka Y, Mori T (1991) Block to development in cultured rat 1-cell embryos is overcome using medium HECM-1. Hum Reprod 6:1445–1448

    Article  CAS  Google Scholar 

  15. Kane MT (1987) Minimal nutrient requirement for culture of one-cell rabbit embryos. Biol Reprod 37:775–778

    Article  CAS  Google Scholar 

  16. Tibary A (2017) Grand challenge animal reproduction-theriogenology: from the bench to application to animal production and reproductive medicine. Front Vet Sci 4:1–6

    Article  Google Scholar 

  17. Loi P, Toschi P, Zacchini F, Ptak G, Scapolo PA, Capra E, Stella A, Marsan PA, Williams JL (2016) Synergies between assisted reproduction technologies and functional genomics. Genet Sel Evol 48:53

    Article  Google Scholar 

  18. Horii T, Hatada I (2016) Production of genome-edited pluripotent stem cells and mice by CRISPR/Cas. Endocr J 63:213–219

    Article  CAS  Google Scholar 

  19. Kim EJ, Kang KH, Ju JH (2017) CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med 32:42–61

    Article  CAS  Google Scholar 

  20. Schini SA, Bavister BD (1988) Development of golden hamster embryos through the “two-cell block” in chemically defined medium. J Exp Zool 245:111–115

    Article  CAS  Google Scholar 

  21. Schini SA, Bavister BD (1988) Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose. Biol Reprod 39:1183–1192

    Article  CAS  Google Scholar 

  22. Seshagiri PB, Bavister BD (1990) Assessment of hamster blastocysts derived from eight-cell embryos cultured in hamster embryo culture medium-2 (HECM-2): cell numbers and viability following embryo transfer. J In Vitro Fert Embryo Transf 7:229–235

    Article  CAS  Google Scholar 

  23. Biggers JD (1987) Pioneering mammalian embryo culture. In: Bavister BD (ed) The mammalian preimplantation embryos: regulation of growth and differentiation in vitro. Plenum, New York, pp 1–22

    Google Scholar 

  24. Lane M, Gardner DK (2007) Embryo culture medium: which is the best? Best Pract Res Clin Obstet Gynaecol 21:83–100

    Article  Google Scholar 

  25. Kang JH, Hwang JS, Yoon JA, Jun JH, Lim HJ, Yoon TK, Song H (2011) Activation of peroxisome proliferators activated receptor δ (PPARδ) promotes blastocyst hatching in mice. Mol Hum Reprod 17:653–660

    Article  CAS  Google Scholar 

  26. Brusentsev EY, Igonina TN, Amstislavsky SY (2014) Traditional and modern approaches to culture of preimplantation mammalian embryos in vitro. Russ J Dev Biol 45:53–65

    Article  Google Scholar 

  27. Casanova EA, Okoniewski MJ, Cinelli P (2012) Cross-species genome wide expression analysis during pluripotent cell determination in mouse and rat preimplantation embryos. PLoS One 7:e47107

    Article  CAS  Google Scholar 

  28. Nakamura K, Morimoto K, Shima K, Yoshimura Y, Kazuki Y, Suzuki O, Matsuda J, Ohbayashi T (2016) The effect of supplementation of amino acids and taurine to modified KSOM culture medium on rat embryo development. Theriogenology 86:2083–2090

    Article  CAS  Google Scholar 

  29. Seshagiri PB, Bavister BD (1989) Glucose inhibits development of hamster 8-cell embryos in vitro. Biol Reprod 40:599–606

    Article  CAS  Google Scholar 

  30. Seshagiri PB, Bavister BD (1989) Phosphate is required for glucose inhibition of development of hamster 8-cell embryos in vitro. Biol Reprod 40:607–614

    Article  CAS  Google Scholar 

  31. Seshagiri PB, Bavister BD (1991) Glucose and phosphate inhibit respiration and oxidative metabolism in cultured hamster eight-cell embryos: evidence for the “Crabtree effect”. Mol Reprod Dev 30:105–111

    Article  CAS  Google Scholar 

  32. Seshagiri PB, Bavister BD (1991) Relative developmental abilities of hamster 2- and 8-cell embryos cultured in hamster embryo culture medium-1 and -2. J Exp Zool 257:51–57

    Article  CAS  Google Scholar 

  33. Seshagiri PB, McKenzie DI, Bavister BD, Williamson JL, Aiken JM (1992) Golden hamster embryonic genome activation occurs at the two-cell stage: correlation with major developmental changes. Mol Reprod Dev 32:229–235

    Article  CAS  Google Scholar 

  34. McKiernan SH, Clayton MK, Bavister BD (1995) Analysis of stimulatory and inhibitory amino acids for development of hamster one-cell embryos in vitro. Mol Reprod Dev 42:188–199

    Article  CAS  Google Scholar 

  35. Ain R, Seshagiri PB (1997) Succinate and malate improve development of hamster eight-cell embryos in vitro: confirmation of viability of embryo transfer. Mol Reprod Dev 47:440–447

    Article  CAS  Google Scholar 

  36. Mishra A, Seshagiri PB (1998) Successful development in vitro of hamster 8-cell embryos to ‘zona-escaped’ and attached blastocysts: assessment of quality and trophoblast outgrowth. Reprod Fertil Dev 10:413–420

    Article  CAS  Google Scholar 

  37. Sireesha GV, Mason RW, Hassanein M, Tonack S, Navarrete Santos A, Fischer B, Seshagiri PB (2008) Role of cathepsins in blastocyst hatching in the golden hamster. Mol Hum Reprod 14:337–346

    Article  CAS  Google Scholar 

  38. Sen Roy S, Seshagiri PB (2013) Expression and function of cyclooxygenase-2 is necessary for hamster blastocyst hatching. Mol Hum Reprod 19:838–851

    Article  CAS  Google Scholar 

  39. Fischer B, Chavatte-Palmer P, Viebahn C, Santos AN, Duranthon V (2012) Rabbit as a reproductive model for human health. Reproduction 144:1–10

    Article  CAS  Google Scholar 

  40. Yanagimachi R, Chang MC (1963) Fertilization of hamster eggs in vitro. Nature 200:281–282

    Article  CAS  Google Scholar 

  41. Yanagimachi R, Chang MC (1964) In vitro fertilization of golden hamster ova. J Exp Zool 156:361–376

    Article  CAS  Google Scholar 

  42. Ji W, Bavister BD (2000) Development of zona-free hamster ova to blastocysts in vitro. Theriogenology 54:827–834

    Article  CAS  Google Scholar 

  43. Wittingham DG, Bavister BD (1974) Development of hamster eggs fertilized in vitro and in vivo. J Reprod Fertil 38:489–492

    Article  Google Scholar 

  44. McKiernan SH, Bavister BD (1990) Environmental variables influencing in vitro development of hamster 2-cell embryos to the blastocyst stage. Biol Reprod 43:404–413

    Article  CAS  Google Scholar 

  45. Monis H, Bavister BD (1990) Analysis of the inhibitory effect of inorganic phosphate on development of four-cell hamster embryos in vitro. J Exp Zool 256:75–83

    Article  CAS  Google Scholar 

  46. Kane MT, Carney EW, Bavister BD (1986) Vitamins and amino acids stimulate hamster blastocysts to hatch in vitro. J Exp Zool 239:429–432

    Article  CAS  Google Scholar 

  47. Kane MT, Bavister BD (1988) Protein-free culture medium containing polyvinyl alchohol, vitamins and amino acids supports development of eight-cell hamster embryos to hatching blastocyst. J Exp Zool 247:183–187

    Article  CAS  Google Scholar 

  48. Kane MT, Bavister BD (1988) Vitamin requirements for development of eight-cell hamster embryos to hatching blastocysts in vitro. Biol Reprod 39:1137–1143

    Article  CAS  Google Scholar 

  49. McKiernan SH, Bavister BD, Tasca RJ (1991) Energy substrate requirements for in-vitro development of hamster 1- and 2-cell embryos to the blastocyst stage. Hum Reprod 6:64–75

    Article  CAS  Google Scholar 

  50. Ludwig TE, Lane M, Bavister BD (2001) Differential effect of hexoses on hamster embryo development in culture. Biol Reprod 64:1366–1374

    Article  CAS  Google Scholar 

  51. Paria BC, Reese J, Das SK, Dey SK (2002) Deciphering the cross-talk of implantation: advances and challenges. Science 296:2185–2188

    Article  CAS  Google Scholar 

  52. Seshagiri PB, Mishra A, Ramesh G, Rao RP (2002) Regulation of peri-attachment embryo development in the golden hamster: role of growth factors. J Reprod Immunol 53:203–213

    Article  CAS  Google Scholar 

  53. Reese H, Wang H, Ding T, Paria BC (2008) The hamster as a model for embryo implantation: insights into a multifaceted process. Semin Cell Dev Biol 19:194–203

    Article  CAS  Google Scholar 

  54. Sen Roy S, Seshagiri PB (2016) The NF-κB signaling system is required for blastocyst hatching in the golden hamster: mediated by the expression of hatching-promoting cathepsins. J Reprod Health Med 2:74–82

    Article  Google Scholar 

  55. McKiernan SH, Bavister BD (1993) What is the most appropriate endpoint for evaluating preimplantation embryonic development in vitro? In: Bavister BD (ed) Preimplantation embryo development. Springer, New York, p 320

    Google Scholar 

  56. Ludwig TE, Squirrell JM, Palmenberg AC, Bavister BD (2001) Relationship between development, metabolism, and mitochondrial organization in 2-cell hamster embryos in the presence of low levels of phosphate. Biol Reprod 65:1648–1654

    Article  CAS  Google Scholar 

  57. Carney EW, Bavister BD (1987) Regulation of hamster embryo development in vitro by carbon dioxide. Biol Reprod 36:1155–1163

    Article  CAS  Google Scholar 

  58. Bavister BD, McKiernan SH (1993) Regulation of hamster embryo development. In vitro by amino acids. In: Bavister BD (ed) Preimplantation embryo development. Springer, New York, pp 57–72

    Chapter  Google Scholar 

  59. McKiernan SH, Bavister BD (1994) Timing of development is a critical parameter for predicting successful embryogenesis. Hum Reprod 9:2123–2129

    Article  CAS  Google Scholar 

  60. McKiernan SH, Bavister BD (2000) Culture of one-cell hamster embryos with water soluble vitamins: pantothenate stimulates blastocyst production. Hum Reprod 15:57–164

    Article  Google Scholar 

  61. Mishra A, Seshagiri PB (2000) Evidence for the involvement of a species-specific embryonic protease in zona escape of hamster blastocysts. Mol Hum Reprod 6:1005–1012

    Article  CAS  Google Scholar 

  62. Mishra A, Seshagiri PB (2000) Heparin binding-epidermal growth factor improves blastocyst hatching and trophoblast outgrowth in the golden hamster. Reprod Biomed Online 1:87–95

    Article  CAS  Google Scholar 

  63. Seshagiri PB, Sen Roy S, Sireesha G, Rao RP (2009) Cellular and molecular regulation of mammalian blastocyst hatching. J Reprod Immunol 83:79–84

    Article  CAS  Google Scholar 

  64. Gonzales DS, Boatman DE, Bavister BD (1996) Kinematics of trophectoderm projections and locomotion in the peri-implantation hamster blastocyst. Dev Dyn 205:435–444

    Article  CAS  Google Scholar 

  65. Seshagiri PB, Vani V, Madhulika P (2016) Cytokines and blastocyst hatching. Am J Reprod Immunol 75:208–117

    Article  CAS  Google Scholar 

  66. Katz-Jaffe MG, Schoolcraft WB, Gardner D (2006) Analysis of protein expression (secretome) by human and mouse preimplantation embryos. Fertil Steril 86:678–685

    Article  CAS  Google Scholar 

  67. Herrick JR, Silva E, Krisher RL (2016) Using new analytical tools to produce better embryos in vitro. Anim Reprod 13:182–190

    Article  Google Scholar 

  68. Wang H, Dey SK (2006) Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet 7:185–199

    Article  Google Scholar 

  69. Libersky EA, Boatman DE (1995) Effects of progesterone on in vitro sperm capacitation and egg penetration in the golden hamster. Biol Reprod 53:483–487

    Article  CAS  Google Scholar 

  70. Gwatkin RB, Haidri AA (1973) Requirements for the maturation of hamster oocytes in vitro. Exp Cell Res 76:1–7

    Article  CAS  Google Scholar 

  71. Lee ST, Kim TM, Cho MY, Moon SY, Han JY, Lim JM (2005) Development of a hamster superovulation program and adverse effects of gonadotropins on microfilament formation during oocyte development. Fertil Steril 1:1264–1274

    Article  Google Scholar 

  72. Orsini MW (1964) The external vaginal phenomenon characterizing the stages of the estrous cycle, pregnancy, pseudopregnancy, lactation and the anestrous hamster. Proc Anim Care Panel 11:193–206

    Google Scholar 

  73. Zhou H, Mckiernan SH, Ji W, Bavister BD (2000) Effect of antibiotics on development in vitro of hamster pronucleate ova. Theriogenology 54:999–1006

    Article  CAS  Google Scholar 

  74. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2−δδCt method. Methods 25:402–408

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P.B.S. would like to dedicate this chapter to Prof. Barry D. Bavister who is the pioneer of hamster embryo culture technology. P.B.S. is immensely indebted to Prof. Bavister for his invaluable inputs during P.B.S.’s initial research phase on hamster preimplantation embryogenesis and for his generous encouragement of P.B.S.’s research career. We thank Ms. Madhulika Pathak and M.S. Pamdavathy for help during the preparation of the manuscript. We gratefully acknowledge the funding support received from the Indian Institute of Science and the Department of Science and Technology, Government of India, New Delhi. High-end confocal imaging facility provided by the Department of Biotechnology (Government of India, New Delhi) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polani B. Seshagiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Seshagiri, P.B., Vani, V. (2019). Enabling Hamster Embryo Culture System: Development of Preimplantation Embryos. In: Herrick, J. (eds) Comparative Embryo Culture. Methods in Molecular Biology, vol 2006. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9566-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9566-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9565-3

  • Online ISBN: 978-1-4939-9566-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics