Skip to main content

The Domestic Dog Embryo: In Vitro Fertilization, Culture, and Transfer

  • Protocol
  • First Online:
Comparative Embryo Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2006))

Abstract

Advances in embryo technologies in the domestic dog have made significant strides in the past decade. This progress has been spurred by interests in taking advantage of the dog as a biomedical research model for human and companion animal medicine, developing assisted reproductive technologies to manage genetic diversity in endangered canids maintained ex situ, and improving breeding in rare or working breeds of dogs. Here, we focus on recent advancements and techniques for collection of in vivo-matured oocytes, in vitro fertilization (IVF), in vitro culture of early (≤8-cell) and advanced stage (≥16-cell) embryos, and embryo transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsai K, Clark L, Murphy K (2007) Understanding hereditary diseases using the dog and human as companion model systems. Mamm Genome 18(6):444–451. https://doi.org/10.1007/s00335-007-9037-1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nicholas FW (n.d.) OMIA – online Mendelian inheritance in animals. http://omia.angis.org.au/home/. Accessed 1 May 2017

  3. Hong SG, Kim MK, Jang G, Oh HJ, Park JE, Kang JT, Koo OJ, Kim T, Kwon MS, Koo BC, Ra JC, Kim DY, Ko C, Lee BC (2009) Generation of red fluorescent protein transgenic dogs. Genesis 47(5):314–322. https://doi.org/10.1002/dvg.20542

    Article  CAS  PubMed  Google Scholar 

  4. Kim MJ, Oh HJ, Park JE, Kim GA, Hong SG, Jang G, Kwon MS, Koo BC, Kim T, Kang SK, Ra JC, Ko C, Lee BC (2011) Generation of transgenic dogs that conditionally express green fluorescent protein. Genesis 49(6):472–478

    Article  CAS  PubMed  Google Scholar 

  5. Jeong YW, Lee GS, Kim JJ, Park SW, Ko KH, Kang M, Kim YK, Jung EM, Hyun SH, Shin T, Jeung EB, Hwang WS (2012) Establishment of a canine model of human type 2 diabetes mellitus by overexpressing phosphoenolypyruvate carboxykinase. Int J Mol Med 30(2):321–329

    Article  CAS  PubMed  Google Scholar 

  6. Zou Q, Wang X, Liu Y, Ouyang Z, Long H, Wei S, Xin J, Zhao B, Lai S, Shen J, Ni Q, Yang H, Zhong H, Li L, Hu M, Zhang Q, Zhou Z, He J, Yan Q, Fan N, Zhao Y, Liu Z, Guo L, Huang J, Zhang G, Ying J, Lai L, Gao X (2015) Generation of gene-target dogs using CRISPR/Cas9 system. J Mol Cell Biol 7(6):580–583. https://doi.org/10.1093/jmcb/mjv061

    Article  PubMed  Google Scholar 

  7. IUCN (2017) IUCN Red list of threatened species. www.iucnredlist.org. Accessed 3 Oct 2017. Vol 2017.2

  8. Concannon PW (2011) Reproductive cycles of the domestic bitch. Anim Reprod Sci 124(3/4):200–210. https://doi.org/10.1016/j.anireprosci.2010.08.028

    Article  CAS  PubMed  Google Scholar 

  9. Bouchard G, Youngquist RS, Vaillancourt D, Krause GF, Guay P, Paradis M (1991) Seasonality and variability of the interestrous interval in the bitch. Theriogenology 36(1):41–50. https://doi.org/10.1016/0093-691X(91)90432-D

    Article  CAS  PubMed  Google Scholar 

  10. Kutzler MA (2005) Induction and synchronization of estrus in dogs. Theriogenology 64(3):766–775. https://doi.org/10.1016/j.theriogenology.2005.05.025

    Article  CAS  PubMed  Google Scholar 

  11. Shille V, Thatcher M, Simmons K (1984) Efforts to induce estrus in the bitch, using pituitary gonadotropins. J Am Vet Med Assoc 184(12):1469–1473

    CAS  PubMed  Google Scholar 

  12. Kooistra H, Okkens A, Bevers M, Popp-Snijders C, Van Haaften B, Dieleman S, Schoemaker J (1999) Bromocriptine-induced premature oestrus is associated with changes in the pulsatile secretion pattern of follicle-stimulating hormone in beagle bitches. J Reprod Fertil 117(2):387–393

    Article  CAS  PubMed  Google Scholar 

  13. Concannon PW, Temple M, Montanez A, Newton L (2006) Effects of dose and duration of continuous GnRH-agonist treatment on induction of estrus in beagle dogs: competing and concurrent up-regulation and down-regulation of LH release. Theriogenology 66(6–7):1488–1496. https://doi.org/10.1016/j.theriogenology.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  14. Verstegen J, Onclin K, Silva L, Concannon P (1999) Effect of stage of anestrus on the induction of estrus by the dopamine agonist cabergoline in dogs. Theriogenology 51(3):597–611

    Article  CAS  PubMed  Google Scholar 

  15. Volkmann D, Kutzler M, Wheeler R, Krekeler N (2006) The use of deslorelin implants for the synchronization of estrous in diestrous bitches. Theriogenology 66(6):1497–1501

    Article  CAS  PubMed  Google Scholar 

  16. Trigg T, Wright P, Armour A, Williamson P, Junaidi A, Martin G, Doyle A, Walsh J (2001) Use of a GnRH analogue implant to produce reversible long-term suppression of reproductive function in male and female domestic dogs. J Reprod Fertil Suppl 57:255–261

    CAS  PubMed  Google Scholar 

  17. Romagnoli S, Stelletta C, Milani C, Gelli D, Falomo ME, Mollo A (2009) Clinical use of deslorelin for the control of reproduction in the bitch. Reprod Domest Anim 44:36–39. https://doi.org/10.1111/j.1439-0531.2009.01441.x

    Article  PubMed  Google Scholar 

  18. Reynaud K, Fontbonne A, Marseloo N, Thoumire S, Chebrout M, de Lesegno CV, Chastant-Maillard S (2005) In vivo meiotic resumption, fertilization and early embryonic development in the bitch. Reproduction 130(2):193–201. https://doi.org/10.1530/rep.1.00500

    Article  CAS  PubMed  Google Scholar 

  19. Rodrigues BA, Rodrigues JL (2010) In vitro maturation of canine oocytes: a unique conundrum. Anim Reprod 7(1):3–15

    Google Scholar 

  20. Chastant-Maillard S, Viaris de Lesegno C, Chebrout M, Thoumire S, Meylheuc T, Fontbonne A, Chodkiewicz M, Saint-Dizier M, Reynaud K (2011) The canine oocyte: uncommon features of in vivo and in vitro maturation. Reprod Fertil Dev 23(3):391–402. https://doi.org/10.1071/RD10064

    Article  CAS  PubMed  Google Scholar 

  21. Pereira L, Bicudo S, Lopes M (2012) Oocyte maturation in bitches. Anim Reprod 9:205–209

    Google Scholar 

  22. Chastant-Maillard S, Chebrout M, Thoumire S, Saint-Dizier M, Chodkiewicz M, Reynaud K (2010) Embryo biotechnology in the dog: a review. Reprod Fertil Dev 22(7):1049–1056

    Article  PubMed  Google Scholar 

  23. Reynaud K, Saint-Dizier M, Chastant-Maillard S (2004) In vitro maturation and fertilization of canine oocytes. Methods Mol Biol 253:255–272

    PubMed  Google Scholar 

  24. Kim Y, Travis AJ, Meyers-Wallen VN (2007) Parturition prediction and timing of canine pregnancy. Theriogenology 68(8):1177–1182

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kutzler MA, Mohammed HO, Lamb SV, Meyers-Wallen VN (2003) Accuracy of canine parturition date prediction from the initial rise in preovulatory progesterone concentration. Theriogenology 60(6):1187–1196. https://doi.org/10.1016/S0093-691X(03)00109-2

    Article  CAS  PubMed  Google Scholar 

  26. Wildt DE, Panko WB, Chakraborty PK, Seager SWJ (1979) Relationship of serum estrone, estradiol-17β and progesterone to LH, sexual behavior and time of ovulation in the bitch. Biol Reprod 20(3):648–658. https://doi.org/10.1095/biolreprod20.3.648

    Article  CAS  PubMed  Google Scholar 

  27. Hase M, Hori T, Kawakami E, Tsutsui T (2000) Plasma LH and progesterone levels before and after ovulation and observation of ovarian follicles by ultrasonographic diagnosis system in dogs. J Vet Med Sci 62(3):243–248

    Article  CAS  PubMed  Google Scholar 

  28. Nagashima JB, Sylvester SR, Nelson JL, Cheong SH, Mukai C, Lambo C, Flanders JA, Meyers-Wallen VN, Songsasen N, Travis AJ (2015) Live births from domestic dog (Canis familiaris) embryos produced by in vitro fertilization. PLoS One 10(12):e0143930. https://doi.org/10.1371/journal.pone.0143930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bouchard GF, Solorzano N, Concannon PW, Youngquist RS, Bierschwal CJ (1991) Determination of ovulation time in bitches based on teasing, vaginal cytology, and elisa for progesterone. Theriogenology 35(3):603–611. https://doi.org/10.1016/0093-691X(91)90456-N

    Article  CAS  PubMed  Google Scholar 

  30. Kim M, Oh H, Park J, Hong S, Kang J, Koo O, Kang S, Jang G, Lee B (2010) Influence of oocyte donor and embryo recipient conditions on cloning efficiency in dogs. Theriogenology 74(3):473–478

    Article  CAS  PubMed  Google Scholar 

  31. Hossein MS, Kim MK, Jang G, Fibrianto HY, Oh HJ, Kim HJ, Kang SK, Lee BC (2007) Influence of season and parity on the recovery of in vivo canine oocytes by flushing fallopian tubes. Anim Reprod Sci 99(3):330–341

    Article  CAS  PubMed  Google Scholar 

  32. Jang G, Kim M, Oh H, Hossein M, Fibrianto Y, Hong S, Park J, Kim J, Kim H, Kang S (2007) Birth of viable female dogs produced by somatic cell nuclear transfer. Theriogenology 67(5):941–947

    Article  CAS  PubMed  Google Scholar 

  33. Zou Q, Wang X, Liu Y, Ouyang Z, Long H, Wei S, Xin J, Zhao B, Lai S, Shen J (2015) Generation of gene-target dogs using CRISPR/Cas9 system. J Mol Cell Biol 7(6):580–583

    Article  PubMed  Google Scholar 

  34. Hori T, Tsutsui T (2003) In vitro fertilisation of mature canine ova. Vet Rec 152(22):688

    Article  CAS  PubMed  Google Scholar 

  35. Schini SA, Bavister BD (1988) Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose. Biol Reprod 39(5):1183–1192. https://doi.org/10.1095/biolreprod39.5.1183

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi Y, First NL (1992) In vitro development of bovine one-cell embryos: Influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 37(5):963–978. https://doi.org/10.1016/0093-691X(92)90096-A

    Article  CAS  PubMed  Google Scholar 

  37. Rodrigues BÁ, Santos LC, Rodrigues JL (2004) Embryonic development of in vitro matured and in vitro fertilized dog oocytes. Mol Reprod Dev 67(2):215–223. https://doi.org/10.1002/mrd.10394

    Article  CAS  PubMed  Google Scholar 

  38. Saikhun J, Sriussadaporn S, Thongtip N, Pinyopummin A, Kitiyanant Y (2008) Nuclear maturation and development of IVM/IVF canine embryos in synthetic oviductal fluid or in co-culture with buffalo rat liver cells. Theriogenology 69(9):1104–1110. https://doi.org/10.1016/j.theriogenology.2008.01.024

    Article  CAS  PubMed  Google Scholar 

  39. Yamada S, Shimazu Y, Kawano Y, Nakazawa M (1993) In vitro maturation and fertilization of preovulatory dog oocytes. J Reprod Fertil 47:227–229

    CAS  Google Scholar 

  40. Cruz M, Garrido N, Herrero J, Pérez-Cano I, Muñoz M, Meseguer M (2012) Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reprod Biomed Online 25(4):371–381

    Article  PubMed  Google Scholar 

  41. Dal Canto M, Coticchio G, Renzini MM, De Ponti E, Novara PV, Brambillasca F, Comi R, Fadini R (2012) Cleavage kinetics analysis of human embryos predicts development to blastocyst and implantation. Reprod Biomed Online 25(5):474–480

    Article  PubMed  Google Scholar 

  42. Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, Pera RAR (2010) Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol 28(10):1115–1121

    Article  CAS  PubMed  Google Scholar 

  43. Muñoz M, Cruz M, Humaidan P, Garrido N, Pérez-Cano I, Meseguer M (2013) The type of GnRH analogue used during controlled ovarian stimulation influences early embryo developmental kinetics: a time-lapse study. Eur J Obstet Gynecol Reprod Biol 168(2):167–172

    Article  PubMed  Google Scholar 

  44. Basile N, Morbeck D, García-Velasco J, Bronet F, Meseguer M (2013) Type of culture media does not affect embryo kinetics: a time-lapse analysis of sibling oocytes. Hum Reprod 28(3):634–641

    Article  CAS  PubMed  Google Scholar 

  45. Chavez SL, Loewke KE, Han J, Moussavi F, Colls P, Munne S, Behr B, Pera RAR (2012) Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun 3:1251

    Article  PubMed  Google Scholar 

  46. Reynaud K, Fontbonne A, Marseloo N, de Lesegno CV, Saint-Dizier M, Chastant-Maillard S (2006) In vivo canine oocyte maturation, fertilization and early embryogenesis: a review. Theriogenology 66(6):1685–1693

    Article  PubMed  Google Scholar 

  47. Tsutsui T (1989) Gamete physiology and timing of ovulation and fertilization in dogs. J Reprod Fertil Suppl 39:269

    CAS  PubMed  Google Scholar 

  48. Tsutsui T, Takahashi F, Hori T, Kawakami E, Concannon PW (2009) Prolonged duration of fertility of dog ova. Reprod Domest Anim 44:230–233. https://doi.org/10.1111/j.1439-0531.2009.01450.x

    Article  PubMed  Google Scholar 

  49. Bysted B, Greve T (2000) Activation of the embryonic genome in the dog. Theriogenology 53:269

    Google Scholar 

  50. Otoi T, Shin T, Kraemer DC, Westhusin ME (2004) Influence of maturation culture period on the development of canine oocytes after in vitro maturation and fertilization. Reprod Nutr Dev 44(6):631–637

    Article  PubMed  Google Scholar 

  51. Hatoya S, Sugiyama Y, Torii R, Wijewardana V, Kumagai D, Sugiura K, Kida K, Kawate N, Tamada H, Sawada T, Inaba T (2006) Effect of co-culturing with embryonic fibroblasts on IVM, IVF and IVC of canine oocytes. Theriogenology 66(5):1083–1090. https://doi.org/10.1016/j.theriogenology.2005.12.015

    Article  CAS  PubMed  Google Scholar 

  52. Otoi T, Murakami M, Fujii M, Tanaka M, Ooka A, Suzuki T (2000) Development of canine oocytes matured and fertilised in vitro. Vet Rec 146:52–53

    Article  CAS  PubMed  Google Scholar 

  53. Lindeberg H, Jalkanen L, Savolainen R (1993) In vitro culture of silver fox embryos. Theriogenology 40(4):779–788. https://doi.org/10.1016/0093-691X(93)90213-O

    Article  CAS  PubMed  Google Scholar 

  54. Renton JP, Boyd JS, Eckersall PD, Ferguson JM, Harvey MJA, Mullaney J, Perry B (1991) Ovulation, fertilization and early embryonic development in the bitch (Canis familiaris). J Reprod Fertil 93(1):221–231. https://doi.org/10.1530/jrf.0.0930221

    Article  CAS  PubMed  Google Scholar 

  55. Abe Y, Suwa Y, Yanagimoto-Ueta Y, Suzuki H (2008) Preimplantation development of embryos in labrador retrievers. J Reprod Dev 54(2):135–137

    Article  PubMed  Google Scholar 

  56. Tsutsui T, Hori T, Okazaki H, Tanaka A, Shiono M, Yokosuka M, Kawakami E (2001) Transfer of canine embryos at various developmental stages recovered by hysterectomy or surgical uterine flushing. J Vet Med Sci 63(4):401–405

    Article  CAS  PubMed  Google Scholar 

  57. Hiraoka K, Hiraoka K, Kinutani M, Kinutani K (2004) Blastocoele collapse by micropipetting prior to vitrification gives excellent survival and pregnancy outcomes for human day 5 and 6 expanded blastocysts. Hum Reprod 19(12):2884–2888

    Article  PubMed  Google Scholar 

  58. Kamath MS, Mangalaraj AM, Muthukumar K, Cullinan R, Aleyamma TK, George K (2011) Blastocyst cryopreservation using solid surface vitrification: a preliminary study. J Hum Reprod Sci 4(3):114–120. https://doi.org/10.4103/0974-1208.92284

    Article  PubMed  PubMed Central  Google Scholar 

  59. Abe Y, Suwa Y, Asano T, Ueta YY, Kobayashi N, Ohshima N, Shirasuna S, Abdel-Ghani MA, Oi M, Kobayashi Y, Miyoshi M, Miyahara K, Suzuki H (2010) Cryopreservation of canine embryos. Biol Reprod 84(2):363–368. https://doi.org/10.1095/biolreprod.110.087312

    Article  CAS  PubMed  Google Scholar 

  60. Whittingham D (1974) Embryo banks in the future of developmental genetics. Genetics 78(1):395

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mahi CA, Yanagimachi R (1978) Capacitation, acrosome reaction, and egg penetration by canine spermatozoa in a simple defined medium. Gamete Res 1(2):101–109. https://doi.org/10.1002/mrd.1120010203

    Article  Google Scholar 

  62. Holmquist L (1982) Surface modification of Beckman ultra-clear centrifuge tubes for density gradient centrifugation of lipoproteins. J Lipid Res 23(8):1249–1250

    CAS  PubMed  Google Scholar 

  63. Tsutsui T (1975) Studies on the reproduction in the dog. V. On cleavage and transport of fertilized ova in the oviduct. Jpn J Anim Reprod 21(2):70–75. https://doi.org/10.1262/jrd1955.21.70

    Article  Google Scholar 

  64. Li D-K, Liu L, Odouli R (2003) Exposure to non-steroidal anti-inflammatory drugs during pregnancy and risk of miscarriage: population based cohort study. BMJ 327(7411):368–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Nagashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nagashima, J.B., Travis, A.J., Songsasen, N. (2019). The Domestic Dog Embryo: In Vitro Fertilization, Culture, and Transfer. In: Herrick, J. (eds) Comparative Embryo Culture. Methods in Molecular Biology, vol 2006. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9566-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9566-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9565-3

  • Online ISBN: 978-1-4939-9566-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics