Phloem pp 95-108 | Cite as

Live-Cell Imaging of Fluorescently Tagged Phloem Proteins with Confocal Microscopy

  • Thibaud Cayla
  • Rozenn Le Hir
  • Sylvie DinantEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2014)


Confocal laser scanning microscopy can enable observation of phloem cells in living tissues. Here we describe live imaging of phloem cells in the leaves and roots of Arabidopsis thaliana using fluorescently tagged proteins, either expressed in the vasculature using phloem specific promoters or constitutively expressed reference marker lines. Now, the majority of phloem cell types can be identified, allowing a precise cellular and subcellular localization of phloem proteins.

Key words

Fluorescent markers Mobile symplasmic probes Green fluorescent proteins Live-cell imaging Microscopy 



Companion cell


Cyan fluorescent protein


Green fluorescent protein


Phloem parenchyma cell


Sieve element


Yellow fluorescent protein



The IJPB benefits from the support of the LabEx Saclay Plant Sciences-SPS (ANR-10-LABX-0040-SPS) managed by the French National Research Agency under an “Investments for the Future” program (ref. ANR-11-IDEX-0003-02). We thank the Imaging and Cytology platform of the Plant Observatory (IJPB Institute, INRA Versailles-Grignon, France) for light microscopy observations. TC was supported by a PhD fellowship from Doctoral School ED145 “Sciences du Végétal,” Paris—Sud XI University.


  1. 1.
    Lucas WJ, Groover A, Lichtenberger R et al (2013) The plant vascular system: Evolution, development and functions. J Integr Plant Biol 55:294–388CrossRefGoogle Scholar
  2. 2.
    Turnbull CGN, Lopez-Cobollo RM (2013) Heavy traffic in the fast lane: long-distance signalling by macromolecules. New Phytol 198:33–51CrossRefGoogle Scholar
  3. 3.
    Koroleva OA, Davies A, Deeken R et al (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124:599–608CrossRefGoogle Scholar
  4. 4.
    Husebye H, Chadchawan S, Winge P et al (2002) Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Plant Physiol 128:1180–1188CrossRefGoogle Scholar
  5. 5.
    Chen L-Q, Qu X-Q, Hou B-H et al (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211CrossRefGoogle Scholar
  6. 6.
    Le Hir R, Spinner L, Klemens P et al (2015) Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Mol Plant 8:1687–1690CrossRefGoogle Scholar
  7. 7.
    Moison M, Marmagne A, Dinant S et al (2018) Three cytosolic glutamine synthetase isoforms localized in different-order veins act together for N remobilization and seed filling in Arabidopsis. J Exp Bot 69:4379–4393CrossRefGoogle Scholar
  8. 8.
    Burlat V, Oudin A, Courtois M et al (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derive. Plant J 38:131–141CrossRefGoogle Scholar
  9. 9.
    Simkin AJ, Miettinen K, Claudel P et al (2013) Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry 85:36–43CrossRefGoogle Scholar
  10. 10.
    Froelich DR, Mullendore DL, Jensen KH et al (2011) Phloem ultrastructure and pressure flow: Sieve-element-occlusion-related agglomerations do not affect translocation. Plant Cell 23:4428–4445CrossRefGoogle Scholar
  11. 11.
    Dinant S, Lucas WJ (2013) Sieve elements: puzzling activities deciphered through proteomics studies. In: Thompson GA, van Bel AJE (eds) Phloem biochemistry. Wiley-Blackwell, Hoboken, pp 155–185CrossRefGoogle Scholar
  12. 12.
    Knoblauch M, Oparka K (2012) The structure of the phloem - still More questions than answers. Plant J 70:147–156CrossRefGoogle Scholar
  13. 13.
    Truernit E (2014) Phloem imaging. J Exp Bot 65:1681–1688CrossRefGoogle Scholar
  14. 14.
    Stadler R, Wright KM, Lauterbach C et al (2005) Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J 41:319–331CrossRefGoogle Scholar
  15. 15.
    Thompson MV, Wolniak SM (2008) A plasma membrane-anchored fluorescent protein fusion illuminates sieve element plasma membranes in Arabidopsis and tobacco. Plant Physiol 146:1599–1610CrossRefGoogle Scholar
  16. 16.
    Anstead JA, Froelich DR, Knoblauch M et al (2012) Arabidopsis P-Protein filament formation requires both AtSEOR1 and AtSEOR2. Plant Cell Physiol 53:1033–1042CrossRefGoogle Scholar
  17. 17.
    Ross-Elliott TJ, Jensen KH, Haaning KS et al (2017) Phloem unloading in Arabidopsis roots is convective and regulated by the phloem pole pericycle. elife 6:1–31CrossRefGoogle Scholar
  18. 18.
    Cayla T, Batailler B, Le Hir R et al (2015) Live imaging of companion cells and sieve elements in Arabidopsis leaves. PLoS One 10:0118122CrossRefGoogle Scholar
  19. 19.
    Wright KM, Oparka KJ (1996) The fluorescent probe HPTS as a phloem-mobile, symplastic tracer: an evaluation using confocal laser scanning microscopy. J Exp Bot 47:439–445CrossRefGoogle Scholar
  20. 20.
    Knoblauch M, Vendrell M, de Leau E et al (2015) Multispectral phloem-mobile probes: properties and applications. Plant Physiol 167:1211–1220CrossRefGoogle Scholar
  21. 21.
    Knox K, Oparka K (2018) Illuminating the translocation stream. Curr Opin Plant Biol 43:113–118CrossRefGoogle Scholar
  22. 22.
    Oparka KJ, Duckett CM, Prior DAM et al (1994) Real-time imaging of phloem unloading in the root-tip of Arabidopsis. Plant J 6:759–766CrossRefGoogle Scholar
  23. 23.
    Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136CrossRefGoogle Scholar
  24. 24.
    Camilleri C, Azimzadeh J, Pastuglia M et al (2002) The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 14:833–845CrossRefGoogle Scholar
  25. 25.
    Voigt B, Timmers ACJ, Šamaj J et al (2005) GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur J Cell Biol 84:595–608CrossRefGoogle Scholar
  26. 26.
    Boisnard-Lorig C (2001) Dynamic analyses of the expression of the HISTONE::YFP fusion protein in Arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell 13:495–509CrossRefGoogle Scholar
  27. 27.
    Cutler SR, Ehrhardt DW, Griffitts JS et al (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci 97:3718–3723CrossRefGoogle Scholar
  28. 28.
    Thomas CL, Bayer EM, Ritzenthaler C et al (2008) Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol 6:e7CrossRefGoogle Scholar
  29. 29.
    Chisholm ST, Parra MA, Anderberg RJ et al (2001) Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of Tobacco Etch Virus. Plant Physiol 127:1667–1675CrossRefGoogle Scholar
  30. 30.
    Whitham SA (2000) Arabidopsis RTM2 gene is necessary for specific restriction of Tobacco Etch Virus and encodes an unusual small heat shock-like protein. Plant Cell 12:569–582CrossRefGoogle Scholar
  31. 31.
    Kloth KJ, Busscher J, Wiegers G et al (2017) SIEVE ELEMENT-LINING CHAPERONE 1 restricts aphid feeding on Arabidopsis during heat stress. Plant Cell 29:2450–2464CrossRefGoogle Scholar
  32. 32.
    Paultre D (2017), Studies of macromolecular trafficking across Arabidopsis homografts. Danaé Paultre. Doctor of Philosophy. University of EdinburghGoogle Scholar
  33. 33.
    Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128:779–792CrossRefGoogle Scholar
  34. 34.
    Martens HJ, Roberts AG, Oparka KJ et al (2006) Quantification of plasmodesmatal endoplasmic reticulum coupling between sieve elements and companion cells using fluorescence redistribution after photobleaching. Plant Physiol 142:471–480CrossRefGoogle Scholar
  35. 35.
    Poot M, Zhang YZ, Krämer JA et al (1996) Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem 44:1363–1372CrossRefGoogle Scholar
  36. 36.
    Knoblauch M, van BAJE (1998) Sieve tubes in action. Plant Cell 10:35–50CrossRefGoogle Scholar
  37. 37.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco Ttssue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  38. 38.
    Santoni V, Bellini C, Caboche M (1994) Use of two-dimensional protein-pattern analysis for the characterization of Arabidopsis thaliana mutants. Planta 192:557–566CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UMR 1318, Institut Jean-Pierre Bourgin, INRA-AgroParisTech, CNRS, Université Paris-SaclayVersailles CedexFrance

Personalised recommendations