Skip to main content

Analyzing and Predicting Phloem Mobility of Macromolecules with an Online Database

  • Protocol
  • First Online:
Phloem

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2014))

Abstract

Phloem, a specialized plant tissue, serves as a superhighway for macromolecular exchanges between different organs or tissues in plants. These mobile macromolecules may function as signaling molecules to sense intrinsic developmental cues or environmental inputs. Among these mobile molecules, RNAs generally need non-cell-autonomous pathway proteins (NCAPPs) to bind to and help them move along the symplasmic passage (through plasmodesmata) into the phloem stream. Grafting experiments combined with next-generation sequencing discovered that around 11.4% of identified Arabidopsis mobile mRNAs have a tRNA-like structure (TLS) motif. Adding an artificial tRNA-like structure at the 5′ end of cell-autonomous RNAs (e.g., GUS transcript) can trigger its mobility and movement across a grafting junction to distant organs. Based on the accumulated data and the role of the TLS motif in RNA mobility, we built a web server in our database PLaMoM (a database for plant mobile macromolecules) to enable plant biologists to predict and analyze the transcripts they are interested in. In this chapter, we describe how to use our built-in web server to investigate RNA mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruiz-Medrano R, Xoconostle-Cazares B, Kragler F (2004) The plasmodesmatal transport pathway for homeotic proteins, silencing signals and viruses. Curr Opin Plant Biol 7(6):641–650. https://doi.org/10.1016/j.pbi.2004.09.012

    Article  CAS  PubMed  Google Scholar 

  2. Lucas WJ, Wolf S (1999) Connections between virus movement, macromolecular signaling and assimilate allocation. Curr Opin Plant Biol 2(3):192–197. https://doi.org/10.1016/S1369-5266(99)80035-1

    Article  CAS  PubMed  Google Scholar 

  3. Lucas WJ, Yoo BC, Kragler F (2001) RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2(11):849–857. https://doi.org/10.1038/35099096

    Article  CAS  PubMed  Google Scholar 

  4. Heinlein M (2015) Plasmodesmata: channels for viruses on the move. Methods Mol Biol 1217:25–52. https://doi.org/10.1007/978-1-4939-1523-1_2

    Article  CAS  PubMed  Google Scholar 

  5. Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, Minambres M, Walther D, Schulze WX, Paz-Ares J, Scheible WR, Kragler F (2015) Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plants 1(4):15025. https://doi.org/10.1038/nplants.2015.25

    Article  CAS  PubMed  Google Scholar 

  6. Banerjee AK, Chatterjee M, Yu Y, Suh SG, Miller WA, Hannapel DJ (2006) Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18(12):3443–3457. https://doi.org/10.1105/tpc.106.042473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ruiz-Medrano R, Xoconostle-Cazares B, Lucas WJ (1999) Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126(20):4405–4419

    CAS  PubMed  Google Scholar 

  8. Lin MK, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka K, Miura E, Xoconostle-Cazares B, Gendler K, Jorgensen RA, Phinney B, Lough TJ, Lucas WJ (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19(5):1488–1506. https://doi.org/10.1105/tpc.107.051920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liesche J, Patrick J (2017) An update on phloem transport: a simple bulk flow under complex regulation. F1000Res 6:2096. https://doi.org/10.12688/f1000research.12577.1

    Article  PubMed  PubMed Central  Google Scholar 

  10. Guan D, Yan B, Thieme C, Hua J, Zhu H, Boheler KR, Zhao Z, Kragler F, Xia Y, Zhang S (2017) PlaMoM: a comprehensive database compiles plant mobile macromolecules. Nucleic Acids Res 45(D1):D1021–D1028. https://doi.org/10.1093/nar/gkw988

    Article  CAS  PubMed  Google Scholar 

  11. Xia C, Zheng Y, Huang J, Zhou X, Li R, Zha M, Wang S, Huang Z, Lan H, Turgeon R, Fei Z, Zhang C (2018) Elucidation of the mechanisms of long-distance mRNA movement in a Nicotiana benthamiana/Tomato heterograft system. Plant Physiol 177(2):745–758. https://doi.org/10.1104/pp.17.01836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matsuda D, Dreher TW (2004) The tRNA-like structure of Turnip yellow mosaic virus RNA is a 3′-translational enhancer. Virology 321(1):36–46. https://doi.org/10.1016/j.virol.2003.10.023

    Article  CAS  PubMed  Google Scholar 

  13. Zhang W, Thieme CJ, Kollwig G, Apelt F, Yang L, Winter N, Andresen N, Walther D, Kragler F (2016) tRNA-related sequences trigger systemic mRNA transport in plants. Plant Cell 28(6):1237–1249. https://doi.org/10.1105/tpc.15.01056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Auffinger P, Westhof E (2001) An extended structural signature for the tRNA anticodon loop. RNA 7(3):334–341

    Article  CAS  Google Scholar 

  15. Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R (2001) RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 29(22):4724–4735

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from HKBU FRG2/16-17/026 and FRG2/15-16/006 and AoE/M-403/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoudong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guan, D., Xia, Y., Zhang, S. (2019). Analyzing and Predicting Phloem Mobility of Macromolecules with an Online Database. In: Liesche, J. (eds) Phloem. Methods in Molecular Biology, vol 2014. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9562-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9562-2_33

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9561-5

  • Online ISBN: 978-1-4939-9562-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics