Skip to main content

Methods for Assessing the Role of Phloem Transport in Plant Stress Responses

  • Protocol
  • First Online:
Phloem

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2014))

Abstract

Delivery of carbohydrates to tissues that need them under stress is important for plant defenses and survival. Yet, little is known on how phloem function is altered under stress, and how that influences plant responses to stress. This is because phloem is a challenging tissue to study. It consists of cells of various types with soft cell walls, and the cells show strong wounding reactions to protect their integrity, making both imaging and functional studies challenging. This chapter summarizes theories on how phloem transport is affected by stress and presents methods that have been used to gain the current knowledge. These techniques range from tracer studies and imaging to carbon balance and anatomical analyses. Advances in these techniques in the recent years have considerably increased our ability to investigate phloem function, and application of the new methods on plant stress studies will help provide a more comprehensive picture of phloem function and its limitations under stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith WK, Young DR, Carter GA, Hadley JL, McNaughton GM (1984) Autumn stomatal closure in six conifer species of central Rocky Mountains. Oecologia 63:237–242

    Article  CAS  PubMed  Google Scholar 

  2. Tyree MT, Sperry JS (1988) Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress?: answers from a model. Plant Physiol 88:574–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wilkinson S, Clephan AL, Davies WJ (2001) Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold-sensitive tobacco leaves via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol 126:1566–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kerchev PI, Fenton B, Foyer CH, Hancock RD (2012) Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signaling pathways. Plant Cell Environ 35:441–453

    Article  CAS  PubMed  Google Scholar 

  5. Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A (2015) Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci Rep 5:12449

    Article  PubMed  PubMed Central  Google Scholar 

  6. Martin-StPaul N, Delzon S, Cochard H (2017) Plant resistance to drought depends on timely stomatal closure. Ecol Lett 20:1437–1447

    Article  PubMed  Google Scholar 

  7. Roman DT, Novick KA, Brzostek ER, Dragoni D, Rahman F, Phillips RP (2015) The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia 179:641–654

    Article  CAS  PubMed  Google Scholar 

  8. McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  9. Bhaskar R, Ackerly DD (2006) Ecological relevance of minimum seasonal water potentials. Physiol Plant 127:353–359

    Article  CAS  Google Scholar 

  10. Domec JC, Warren JM, Meinzer FC, Brooks JR, Coulombe R (2004) Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution. Oecologia 141:7–16

    Article  PubMed  Google Scholar 

  11. Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009) Xylem hydraulic safety margins in woody plants; coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol 23:922–930

    Article  Google Scholar 

  12. McCulloh KA, Woodruff DR (2012) Linking stomatal sensitivity and whole-tree hydraulic architecture. Tree Physiol 32:369–372

    Article  PubMed  Google Scholar 

  13. Sala A, Piper F, Hoch G (2010) Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol 186:274–281

    Article  PubMed  Google Scholar 

  14. Sala A, Woodruff DR, Meinzer FC (2012) Carbon dynamics in trees: feast or famine? Tree Physiol 32:764–775

    Article  CAS  PubMed  Google Scholar 

  15. Savage JA, Clearwater MJ, Haines DF, Klein T, Mencuccini M, Sevanto S, Turgeon R, Zhang C (2016) Allocation, stress tolerance and carbon transport in plants: How does phloem physiology affect plant ecology? Plant Cell Environ 39:709–725

    Article  CAS  PubMed  Google Scholar 

  16. Hölttä T, Mencuccini M, Nikinmaa E (2009) Linking phloem function to structure: analysis with a coupled xylem – phloem transport model. J Theor Biol 259:325–337

    Article  PubMed  Google Scholar 

  17. Schultz JC, Appel HM, Ferrieri AP, Arnold TM (2013) Flexible resource allocation during plant defense responses. Front Plant Sci 4:article 324

    Article  PubMed  Google Scholar 

  18. Nikinmaa E, Hölttä T, Hari P, Kolari P, Mäkelä A, Sevanto S, Vesala T (2013) Assimilate transport in phloem sets conditions for leaf gas exchange. Plant Cell Environ 36:655–669

    Article  CAS  PubMed  Google Scholar 

  19. Hartmann H, Ziegler W, Trumbore S (2013b) Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy. Funct Ecol 27:413–427

    Article  Google Scholar 

  20. Woodruff DR (2014) The impacts of water stress on phloem transport in Douglas-fir trees. Tree Physiol 34:5–14

    Article  CAS  PubMed  Google Scholar 

  21. Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT (2014) How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ 37:153–161

    Article  CAS  PubMed  Google Scholar 

  22. Garcia-Forner N, Sala A, Biel C, Save R, Martinez-Vilalta J (2016) Individual traits as determinants of time to death under extreme drought in Pinus sylvestris L. Tree Physiol 36:1196–1209

    Article  CAS  PubMed  Google Scholar 

  23. van Bel AJE, Gaupels F (2004) Pathogen-induced resistance and alarm signals in the phloem. Mol Plant Pathol 5:465–504. https://doi.org/10.1111/j.1364-3703.2004.00243.x

    Article  Google Scholar 

  24. Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Knoblauch M, Froelich DR, Pickard WF, Peters WS (2014) SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion. J Exp Bot 65:1879–1893

    Article  CAS  PubMed  Google Scholar 

  26. Kennedy JS, Mittler TE (1953) A method of obtaining phloem sap via the mouth-parts of aphids. Nature 171:528

    Article  Google Scholar 

  27. Minchin PEH, Thorpe MR (1983) A rate of cooling response in phloem translocation. J Exp Bot 34:529–536

    Article  Google Scholar 

  28. Savage JA, Zwieniecki MA, Holbrook NM (2013) Phloem transport velocity varies over time and among vascular bundles during early cucumber seedling development. Plant Physiol 163:1409–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jensen KH, Valente A, Stone HA (2014) Flow rate through microfilters: influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia. Phys Fluids 26:052004

    Article  CAS  Google Scholar 

  30. Knoblauch M, Knoblauch J, Mullendore DL, Savage JA, Babst BA, Beecher SD, Dodgen AC, Jensen KH, Holbrook NM (2016) Testing the Münch hypothesis of long distance phloem transport in plants. elife 5:e15341

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bowes BG (1997) A colour atlas of plant structure. Manson Publishing Ltd, London, p 192

    Google Scholar 

  32. Schulz A (1990) Conifers. In: Behnke HD, Sjolund RD (eds) Sieve elements. Springer, Berlin, pp 63–88

    Chapter  Google Scholar 

  33. Epron D, Cabral OMR, Laclau J-P et al (2016) In situ 13CO2 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon. Tree Physiol 36:6–21

    Article  CAS  PubMed  Google Scholar 

  34. Stanfield RC, Hacke UG, Laur J (2017) Are phloem sieve tubes leaky conduits supported by numerous aquaporins? Am J Bot 104:719–732

    Article  CAS  PubMed  Google Scholar 

  35. Furze ME, Trumbore S, Hartmann H (2018) Detours on the phloem sugar highway: stem carbon storage and remobilization. Curr Opin Plant Biol 43:89–95

    Article  CAS  PubMed  Google Scholar 

  36. Sevanto S (2018) Drought impacts on phloem transport. Curr Opin Plant Biol 43:76–81

    Article  PubMed  Google Scholar 

  37. Pausch J, Kuzyakov Y (2018) Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob Change Biol 24:1–12

    Article  Google Scholar 

  38. Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Article  Google Scholar 

  39. Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monograph 1:1–28

    Google Scholar 

  40. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures; towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  41. Plaut Z, Grava A, Yehezkel C, Matan E (2004) How do salinity and water stress affect transport of water, assimilates and ions to tomato fruits? Physiol Plant 122:429–442

    Article  CAS  Google Scholar 

  42. Knoblauch M, Peters WS (2016) Think outside the sieve element. Plant Cell Environ 39:707–708

    Article  CAS  PubMed  Google Scholar 

  43. Lemoine R, La Camera S, Atanassova R, Dedaldechamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thevenot P, Maurousset L et al (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4:272. https://doi.org/10.3389/fpls.2013.00272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McDowell NG, Sevanto S (2010) The mechanisms of carbon starvation: how, when, or does it even occur at all? New Phytol 186:264–266

    Article  PubMed  Google Scholar 

  45. Sevanto S (2014) Phloem transport and drought. J Exp Bot 65:1751–1759

    Article  CAS  PubMed  Google Scholar 

  46. Thompson MW, Holbrook NM (2003) Scaling phloem transport: Water potential equilibrium and osmoregulatory flow. Plant Cell Environ 26:1561–1577

    Article  Google Scholar 

  47. Grange RI, Peel AJ (1978) Evidence for solution flow in the phloem of willow. Planta 138:15–23

    Article  CAS  PubMed  Google Scholar 

  48. Smith JAC, Milburn JA (1980) Osmoregulation and the control of phloem-sap composition in Ricinus communis L. Planta 148:28–34

    Article  CAS  PubMed  Google Scholar 

  49. Xu Q, Chen S, Yunjuan R, Chen S, Liesche J (2018) Regulation of sucrose transporters and phloem loading in response to environmental cues. Plant Physiol 176:930–945

    Article  CAS  PubMed  Google Scholar 

  50. Lewis DH (1984) Occurrence and distribution of storage carbohydrates in vascular plants. In: Lewis DH (ed) Storage carbohydrates in vascular plants. Distribution, physiology and metabolism. Cambridge University Press, Cambridge UK, pp 1–52

    Google Scholar 

  51. Morison KR (2002) Viscosity equations for sucrose solutions: old and new. In: Proceedings of the Ninth APCChE Congress and CHEMECA Paper # 984

    Google Scholar 

  52. Sevanto S, Ryan MG, Dickman LT, Derome D, Patera A, Defraeye T, Pangle RE, Hudson PJ, Pockman WT (2018) Is desiccation tolerance and avoidance reflected in xylem and phloem anatomy of two co-existing arid-zone coniferous trees? Plant Cell Environ 41:1551–1564

    Article  CAS  PubMed  Google Scholar 

  53. Dannoura M, Epron D, Desalme D, Massonnet C, Tsuji S, Plain C, Priault P, Gerant D (2018) The impact of prolonged drought on phloem anatomy and phloem transport in young beech. Tree Physiol 39(2):201–210. https://doi.org/10.1093/treephys/tpy070

    Article  Google Scholar 

  54. Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maurel C, Verdoucq L, Rodrigues O (2016) Aquaporins and plant transpiration. Plant Cell Environ 39:2580–2587

    Article  CAS  PubMed  Google Scholar 

  56. Milne RJ, Perroux JM, Rae AL, Teinders A, Ward JM, Offler CE, Patrick JW, Grof CPL (2017) Sucrose transporter localization and function in phloem unloading in developing stems. Plant Physiol 173:1330–1341

    Article  CAS  PubMed  Google Scholar 

  57. Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11:707–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lang A (1979) A relay mechanism for phloem translocation. Ann Bot 44:141–145

    Article  Google Scholar 

  59. Thompson, M.V., Zwieniecki, M.A., 2005. The role of potassium in long distance transport in plants. In: Holbrook, N.M., M.A. Zwieniecki, Vascular transport in plants, Elsevier Academic Press Cambridge

    Google Scholar 

  60. Dickman LT, McDowell NG, Sevanto S, Pangle RE, Pockman WT (2014) Carbohydrate dynamics and mortality in a piñon-juniper woodland under three future precipitation scenarios. Plant Cell Environ 38:729–739

    Article  PubMed  CAS  Google Scholar 

  61. Nikam PS, Ansari HR, Hasan M (2000) Density and viscosity studies of glucose and fructose solutions in aqueous and 0.5 mol dm3 aqueous NH4Cl. J Mol Liq 87:97–105

    Article  CAS  Google Scholar 

  62. Roberts AG, Santa Cruz S, Roberts IM, Prior DAM, Turgeon R, Oparka KJ (1997) Phloem unloading in sink leaves of Nicotiana benthamiana: comparison of a fluorescent solute with a fluorescent virus. Plant Cell 9:1381–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Helfter C, Shephard JD, Martinez-Vilalta J, Mencuccini M, Hand DP (2007) A noninvasive optical system for measurements of xylem and phloem sap flow in woody plants of small stem size. Tree Physiol 27:169–179

    Article  PubMed  Google Scholar 

  64. Froelich DF, Mullendore DM, Jensen KH, Ross-Elliott TJ, Anstead JA, Thompson GA, Pelissier H, Knoblauch M (2011) Phloem ultrastructure and pressure flow: sieve-element-occlusion-related agglomerations do not affect translocation. Plant Cell 23:4428–4445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    Article  CAS  PubMed  Google Scholar 

  66. Zhai G, Walters KS, Peate DW, Alvarez PJJ, Schnoor JL (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1(2):146–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Perez-de-Lugue A (2017) Interaction of nanomaterials with plants: What do we need for real applications in agriculture. Front Environ Sci. https://doi.org/10.3389/fenvs.2017.00012

  68. Windt CW, Vergeldt FJ, de Jager PA, van As H (2006) MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ 29:1715–1729

    Article  CAS  PubMed  Google Scholar 

  69. Hubeau M, Steppe K (2015) Plant-PET scans: In vivo mapping of xylem and phloem functioning. Trends Plant Sci 20:676–685

    Article  CAS  PubMed  Google Scholar 

  70. Deborde C, Moing A, Roch L, Jacob D, Rolin D, Giraudeau P (2017) Plant metabolism as studies by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 102-103:61–97

    Article  CAS  PubMed  Google Scholar 

  71. Knoblauch M, Peters WS (2010) Münch, morphology, microfluidics – our structural problem with the phloem. Plant Cell Environ 33:1439–1452

    PubMed  Google Scholar 

  72. De Schepper V, De Swaef T, Bauweraerts I, Steppe K (2013b) Phloem transport: a review of mechanisms and controls. J Exp Bot 64:4839–4850

    Article  PubMed  CAS  Google Scholar 

  73. Mencuccini M, Hölttä T (2010) The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked. New Phytol 185:189–203

    Article  CAS  PubMed  Google Scholar 

  74. Hartmann H, Ziegler W, Kolle O, Trumbore S (2013a) Thirst beast hunger –declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytol 200:340–349

    Article  CAS  PubMed  Google Scholar 

  75. Gressler A, Treydte K (2016) The fate and age of carbon –insights into the storage and remobilization dynamics in trees. New Phytol 209:1338–1340

    Article  Google Scholar 

  76. Ernst AM, Jekat SB, Zielonkla S, Müller B, Neumann U, Rüping B et al (2012a) Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem. Proc Natl Acad Sci U S A 109:11084–11085

    Article  CAS  Google Scholar 

  77. Thorpe MR, Minchin PEH, Dye EA (1979) Oxygen effects on phloem loading. Plant Sci Lett 15:345–350

    Article  CAS  Google Scholar 

  78. Kölling K, Müller A, Flütsch P, Zeeman SC (2013) A device for single leaf labelling with CO2 isotopes to study carbon allocation and partitioning in Arabidopsis thaliana. Plant Methods 9:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Werner C, Schnydeer H, Cuntz M, Keitel C, Zeeman MJ, Dawson TE, Badeck F-W, Brugnoli E, Ghashghaie J, Grams TEE, Kayler ZE, Lakatos M, Lee X, Maguas C, Ogee J, Rascher KG, Siegwolf RTW, Unger S, Welker J, Wingate L, Gessler A (2012) Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales. Biogeosciences 9:3083–3111

    Article  CAS  Google Scholar 

  80. Steinmann K, Siegwolf RTW, Saurer M, Körner C (2004) Carbon fluxes to the soil in a mature temperate forest assessed by 13C isotope tracing. Oecologia 141:489–501

    Article  PubMed  Google Scholar 

  81. Howarth WR, Pregitzer KS, Paul EA (1994) 14C allocation in tree soil systems. Tree Physiol 14:1163–1176

    Article  Google Scholar 

  82. Mikan CJ, Zak DR, Kubiske ME, Pregitzer KS (2000) Combined effects of atmospheric CO2 and N availability on the belowground carbon and nitrogen dynamics of aspen mesocosms. Oecologia 124:432–445

    Article  CAS  PubMed  Google Scholar 

  83. Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ13CO2 pulse labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to soil. New Phytol 153:327–334

    Article  CAS  Google Scholar 

  84. Högberg P, Högberg MN, Göttlicher SG, Betson NR, Keel SG, Metcalfe DB, Campbell C, Schindlbacher A, Hurry V, Lundmark T et al (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177:220–228

    PubMed  Google Scholar 

  85. Pickard WF, Minchin PEH (1990) The transient inhibition of phloem translocation in Phaseolus vulgaris by abrupt temperature drops, vibration and electric shock. J Exp Bot 41:1361–1369

    Article  Google Scholar 

  86. Pate J, Arthur D (1998) δ13C analysis of phloem sap carbon: novel means of evaluating seasonal water stress and interpreting carbon isotope signatures of foliage and trunk wood of Eucalyptus globulus. Oecologia 117:301–311

    Article  PubMed  Google Scholar 

  87. Keitel C, Adams MA, Holst T, Matzarakis A, Mayer H, Rennenberg H, Gessler A (2003) Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short-term measure for stomatal conductance of European beech (Fagus sylvatica L.). Plant Cell Environ 26:1157–1168

    Article  CAS  Google Scholar 

  88. Barbour MM, Hunt JE, Dungan RJ, Turnbull MH, Brailsford GW, Farquhar GD, Whitehead D (2005) Variation in the degree of coupling between delta C-13 of phloem sap and ecosystem respiration in two mature Nothofagus forests. New Phytol 166:497–512

    Article  CAS  PubMed  Google Scholar 

  89. Ruehr NK, Offermann CA, Gessler A, Winkler JB, Ferrio JP, Buchmann N, Barnard RL (2009) Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol 184:950–961

    Article  CAS  PubMed  Google Scholar 

  90. Hommel R, Siegwolf R, Zavadlav S, Arend M, Schaub M, Galiano L, Haeni M, Kayler ZE, Gessler A (2016) Impact of interspecific competition and drought on the allocation of new assimilates in trees. Plant Biol 18:785–196

    Article  CAS  PubMed  Google Scholar 

  91. Minchin PEH, Thorpe MR (1987) Measurement of unloading and reloading of photo-assimilate within the stem of bean. J Exp Bot 38:211–220

    Article  Google Scholar 

  92. McQueen JC, Minchin PEH, Thorpe MR, Silvester WB (2005) Short-term storage of carbohydrate in stem tissue of apple (Malus domestica), a woody perennial: evidence for involvement of the apoplast. Funct Plant Biol 32:1027–1031

    Article  CAS  PubMed  Google Scholar 

  93. Malone MW, Yoder J, Hunter JF, Espy MA, Dickman LT, Nelson RO, Vogel SC, Sandin H, Sevanto S (2016) In vivo observation of tree drought response with low-field NMR and neutron imaging. Front Plant Sci 7:564. https://doi.org/10.3389/fpls.2016.00564

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zarebanadkouki M, Kim YX, Carminati A (2013) Where do roots take up water? Neutron radiography of water flow into the roots of transpiring plants growing in soil. New Phytol 199:1034–1044

    Article  CAS  PubMed  Google Scholar 

  95. Nelson RO, Vogel SC, Hunter J, Watkins EB, Losko AS, Tremsin AS, Borges NP, Cutler TE, Dickman LT, Espy M, Gautier C, Madden AC, Majewski J, Malone MW, Mayo DR, McClellan KJ, Montgomery D, Mosby S, Nelson AT, Ramos K, Schirato RC, Schroeder K, Sevanto S, Swift AL, Vo L, Williamson T, Winch N (2018) Neutron imaging at LANSCE –from cold to ultrafast. J Imag 4:45

    Article  Google Scholar 

  96. Knoblauch M, Vendrell M, de Leau E, Paterlini A, Knox K, Ross-Elliott TJ, Reinders A, Brockman SA, Ward J, Oparka K (2015) Multisectral phloem-mobile probes –properties and applications. Plant Physiol 167:1211–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Truernit E (2014) Phloem imaging. J Exp Bot 65:1681–1688

    Article  CAS  PubMed  Google Scholar 

  98. Knoblauch M, van Bell AJE (1998) Sieve tubes in action. Plant Cell 10:35–50

    Article  CAS  PubMed Central  Google Scholar 

  99. Marion D (2013) An introduction to biological NMR spectroscopy. Mol Cell Proteomics 12:3006–3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Windt CW, Soltner H, van Dusschoten D, Blümler P (2011) A portable Halbach magnet that can be opened and closed without force: the NMR-cuff. JMagnReson 208:27–33

    CAS  Google Scholar 

  101. Kimura T, Geya Y, Terada Y, Kose K, Haishi T, Gemma H et al (2011) Development of a mobile magnetic resonance imaging system for outdoor tree measurements. RevSciInstrum 82:053704

    Google Scholar 

  102. Jones M, Aptaker PS, Cox J, Gardiner B, McDonald P (2012) A transportable magnetic resonance imaging system for in situ measurements of living trees: the tree hugger. J Magn Reson 218:133–140

    Article  CAS  PubMed  Google Scholar 

  103. Yoder J, Espy MA, Malone MW, Sevanto S (2014) Low-field NMR for the in vivo study of water content in trees. Rev Sci Instrum 85:095110–095110-8

    Article  PubMed  CAS  Google Scholar 

  104. Homan NM, Windt CW, Vergeldt FJ, Gerkema E, van As H (2007) 0.7 and 3T MRI and sap flow in intact trees: xylem and phloem in action. Appl Magn Reson 32:157–170

    Article  Google Scholar 

  105. Ilvonen K, Palva L, Perämäki M, Joensuu R, Sepponen R (2001) MRI-based D2O/H2O –contrast methods to study water flow and distribution in heterogenous systems: demonstration in wood xylem. J Magn Reson 149:36–44

    Article  CAS  Google Scholar 

  106. Bourgis F, Kilaru A, Cao X, Ngando-Ebongue G-F, Drira N, Ohlrogge JB, Arondel V (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci U S A 108:12527–12532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Brodribb TJ, Skelton RP, McAdam SA, Bienaime D, Lucani CJ, Marmottant P (2016) Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. New Phytol 209:1403–1409

    Article  PubMed  Google Scholar 

  108. Ohya T, Tanoi K, Hamada Y, Okabe H, Rai H, Hojo J, Suzuki K, Nakanishi TM (2008) An analysis of long-distance water transport in the soybean stem using H215O. Plant Cell Physiol 49:718–729

    Article  CAS  PubMed  Google Scholar 

  109. Mori S, Kiyomiya S, Nakanishi H, Ishioka NS, Watanabe S, Osa A et al (2000) Visualization of 15 O-water flow in tomato and rice in the light and dark using a positron-emitting tracer imaging system (PETIS). Soil Sci Plant Nutr 46:975–979

    Article  Google Scholar 

  110. Kiyomiya S, Nakanishi H, Uchida H, Nishiyama S, Tsukada H, Ishioka NS, Watanabe S, Osa A, Mizuniwa C, Ito T, Matsuhashi S, Hashimoto S, Sekine T, Tsuji A, Mori S (2001) Light activates H2 15O flow in rice: detailed monitoring using a positron-emitting tracer imaging systems (PETIS). Physiol Plant 113:359–367

    Article  CAS  PubMed  Google Scholar 

  111. Nakanishi H, Bughio N, Matsuhashi S, Ishioka NS, Uchida H, Tsuji A, Osa A, Sekine T, Kume T, Mori S (1999) Visualizing real time [11c] methionine translocation in Fe-sufficient and Fe-deficient barley using a positron emitting tracer imaging system (PETIS). J Exp Bot 50:637–643

    Article  CAS  Google Scholar 

  112. Meldau S, Woldemariam MG, Fatangare A, Svatos A, Galis I (2015) Using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) to study carbon allocation in plants after herbivore attack. BMC Res Notes 8:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. De Schepper V, Buhler J, Thorpe M, Roeb G, Huber G, van Dusschoten D, Jahnke S, Steppe K (2013a) 11C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling. Front Plant Sci 4:200

    Article  PubMed  PubMed Central  Google Scholar 

  114. Jahnke S, Menzel MI, Van Dusschoten D, Roeb GW, Buhler J, Minwuyelet S, Blumer P, Temperton VM, Hombach T, Streun M, Beer S, Khodaverdi M, Ziemons K, Coenen HH, Schurr U (2009) Combined MRI-PET dissects dynamic changes in plant structures and functions. Plant J 59:634–644

    Article  CAS  PubMed  Google Scholar 

  115. Hunt S (2003) Measurements of photosynthesis and respiration in plants. Physiol Plant 117:314–325

    Article  CAS  PubMed  Google Scholar 

  116. Quentin AG, Pinkard EA, Ryan MG, Tissue DT, Baggett LS, Adams HD, Maillard P, Marchand J, Landhäusser SM, Lacointe A, Gibon Y, Anderegg WR, Asao S, Atkin OK, Bonhomme M, Claye C, Chow PS, Clement-Vidal A, Davies NW, Dickman LT, Dumbur R, ellsworth DS, Falk K, Galiano L, Grünzweig JM, Hartmann H, Hoch G, Hood S, Jones JE, Koike T, Kuhlmann I, Lloret F, Maestro M, Mansfield SD, Martinez-Vilalta J, Maucourt M, McDowell NG, Moing A, Muller B, Nebauer SG, Niinemets U, Palacio S, Piper F, Raveh E, Richter A, Rolland G, Rosas T, Saint Joanis B, Sala A, Smith RA, Sterck F, Stinziano JR, Tobias M, Unda F, Watanabe M, Way DA, Weerasinghe LK, Wild B, Wiley E, Woodruff DR (2015) Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol 35:1146–1165

    CAS  PubMed  Google Scholar 

  117. Hartmann H, Trumbore S (2016) Understanding the roles of nonstructural carbohydrates in forest trees –from what we can measure to what we want to know. New Phytol 211:386–403

    Article  CAS  PubMed  Google Scholar 

  118. Pinheiro C, Chaves MM (2010) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882

    Article  PubMed  CAS  Google Scholar 

  119. Mitchell PJ, O’Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA (2013) Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytol 197:862–872

    Article  CAS  PubMed  Google Scholar 

  120. Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014) Nonstructural carbon in woody plants. Ann Rev Plant Biol 65:667–687

    Article  CAS  Google Scholar 

  121. Lacointe A (2000) Carbon allocation among tree organs: a review of basic processes and representation in functional-structural tree models. Ann For Sci 57:521–533

    Article  Google Scholar 

  122. Hölttä T, Vesala T, Sevanto S, Perämäki M, Nikinmaa E (2006) Modeling xylem and phloem water flows in trees according to cohesion theory and Münch pressure flow hypothesis. Trees 20:67–78

    Article  Google Scholar 

  123. McDowell NG, Fisher RA, Xu C, Domec JC, Hölttä T, Mackay DS, Sperry JS, Boutz A, Dickman LT, Gehres N, Limousin JM, Macalady A, Martinez-Vilalta J, Mencuccini M, Plaut JA, Ogee J, Pangle RE, Rasse DP, Ryan MG, Sevanto S, Waring RH, Williamn AP, Yepez EA, Pockman WT (2013) Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytol 200:304–321

    Article  CAS  PubMed  Google Scholar 

  124. Klein T, Hoch G (2015) Tree carbon allocation dynamics determined using a carbon mass balance approach. New Phytol 205:147–159

    Article  CAS  PubMed  Google Scholar 

  125. Minchin PEH, Lacointe A (2005) New understanding on phloem physiology and possible consequences for modeling long-distance carbon transport. New Phytol 166:771–779

    Article  CAS  PubMed  Google Scholar 

  126. De Schepper V, Steppe K (2010) Development and verification of a water and sugar transport model using measured stem diameter variations. J Exp Bot 61:2083–2099

    Article  PubMed  CAS  Google Scholar 

  127. Xu C, McDowell NG, Sevanto S, Fisher RA (2013) Our limited ability to predict vegetation dynamics under water stress. New Phytol 200:298–300

    Article  PubMed  Google Scholar 

  128. Jensen KH, Liesche J, Bohr T, Schulz A (2012) Universality of phloem transport in seed plants. Plant Cell Environ 35:1065–1076

    Article  CAS  PubMed  Google Scholar 

  129. Bouche PS, Delzon S, Choat B, Badel E, Brodribb TJ, Burlett R, Cochard H, Charra-Vaskou K, Lavigne B, Li S, Mayr S, Morris H, Torres-Ruiz JM, Zufferey V, Jansen S (2016) Are needles of Pinus pinaster more vulnerable to xylem embolism than branches? New insights from X-ray computed tomography. Plant Cell Environ 39:860–870

    Article  CAS  PubMed  Google Scholar 

  130. Patera A, Carl S, Stampanoni M, Derome D, Carmelier J (2018) A non-rigid registration methods for the analysis of local deformations in the wood cell wall. Adv Struc Chem Imag 4:1

    Article  Google Scholar 

  131. Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys 2:258–261. https://doi.org/10.1038/nphys26

    Article  CAS  Google Scholar 

  132. Sevanto S, Vesala T, Perämäki M, Nikinmaa E (2002) Time lags for xylem and stem diameter variations in a Scots pine tree. Plant Cell Environ 25:1071–1077

    Article  Google Scholar 

  133. Sevanto S, Vesala T, Perämäki M, Nikinmaa E (2003) Sugar transport together with environmental conditions controls time lags between xylem and stem diameter changes. Plant Cell Environ 26:1257–1265

    Article  Google Scholar 

  134. Irvine J, Grace J (1997) Continuous measurements of water tensions in xylem of trees based on the elastic properties of wood. Planta 202:455–461

    Article  CAS  Google Scholar 

  135. Leikola M (1969) Influence of environmental factors on the diameter growth of forest trees: auxanometric study. Acta Forestalia Fennica 92

    Google Scholar 

  136. Lassoie JP (1973) Diurnal dimensional fluctuations in a Douglas-fir stem in response to tree water status. For Sci 19:251–255

    Google Scholar 

  137. Milne R, Ford ED, Deans JD (1983) Time lags in the water relations of Sitka spruce. For Ecol Manag 5:1–25

    Article  Google Scholar 

  138. Neher HV (1993) Effects of pressures inside Monterey pine trees. Trees 8:9–17

    Article  Google Scholar 

  139. Zweifel R, Haeni M, Buchmann N, Eugster W (2016) Are trees able to grow in periods of stem shrinkage? New Phytol 211:839–849

    Article  PubMed  Google Scholar 

  140. De Swaef T, De Schepper V, Vandergehuchte MW, Steppe K (2015) Stem diameter variations as a versatile research too in ecophysiology. Tree Physiol 35:1047–1061

    Article  PubMed  Google Scholar 

  141. Pfautsch S, Renard J, Tjoelker MG, Salih A (2015a) Phloem as capacitor: radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma. Plant Physiol 167:963–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pfautsch S, Hölttä T, Mencuccini M (2015b) Hydraulic functioning of tree stems: fusing ray anatomy, radial transfer and capacitance. Tree Physiol 35:706–722

    Article  CAS  PubMed  Google Scholar 

  143. Mencuccini M, Hölttä T, Sevanto S, Nikinmaa E (2013) Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal. New Phytol 198:1143–1154

    Article  PubMed  Google Scholar 

  144. Pesonen E, Mielikäinen K, Mäkinen H (2004) A new girth band for measuring stem diameter changes. Forestry 77:431–438

    Article  Google Scholar 

  145. Ueda M, Yoshikawa K, Okitu J (1996) Measurement of diurnal changes in stem and branch diameters using strain gauges. J For Res 1:139–142

    Article  Google Scholar 

  146. Fisher DB (1978) An evaluation of the Munch hypothesis for phloem transport in soybean. Planta 139:25–28

    Article  CAS  PubMed  Google Scholar 

  147. Turgeon R (2010) The puzzle of phloem pressure. Plant Physiol 154:578–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Savage JA, Beecher SD, Clerx L, Gersony JT, Knoblauch J, Losada JM, Jensen KH, Knoblauch M, Holbrook NM (2017) Maintenance of carbohydrate transport in tall trees. Nat Plants 3:965–972

    Article  CAS  PubMed  Google Scholar 

  149. Phillips RJ, Dungan SR (1993) Asymptotic analysis of flow in sieve tubes with semi-permeable walls. J Theor Biol 162:465–485

    Article  Google Scholar 

  150. Knoblauch J, Mullendore DL, Jensen KH, Knoblauch M (2014) Pico gauges for minimally invasive intracellular hydrostatic pressure measurements. Plant Physiol 166:1271–1279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Sevanto S, Hölttä T, Markkanen T, Perämäki M, Nikinmaa E, Vesala T (2005) Relationships between diurnal diameter variations and environmental factors in Scots pine. Boreal Environ Res 10:447–458

    Google Scholar 

  152. Sevanto S, Hölttä T, Holbrook NM (2011) Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation. Plant Cell Environ 34:690–703

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanna Sevanto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sevanto, S. (2019). Methods for Assessing the Role of Phloem Transport in Plant Stress Responses. In: Liesche, J. (eds) Phloem. Methods in Molecular Biology, vol 2014. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9562-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9562-2_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9561-5

  • Online ISBN: 978-1-4939-9562-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics