Skip to main content

Measuring Phloem Transport Velocity on a Tissue Level Using a Phloem-Mobile Dye

  • Protocol
  • First Online:
Phloem

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2014))

  • 1575 Accesses

Abstract

Here we describe an in vivo dye-tracking method for measuring phloem transport velocity in seedlings, leaves and petioles and potentially other translucent plant tissues. The method requires measurement of the fluorescent signal of a phloem-mobile fluorescent dye using sensitive photo-sensors placed external to the plant. Following dye application, velocity is determined using laser fluorescence bleaching and measuring the time it takes for the bleach front to reach a light sensor. This method can be used to measure phloem transport velocity on intact plants with minimal disturbance and has a potential to be used under a variety of growth conditions and in the field. Because there are large differences among species in their anatomy, this method should be optimized to individual plants and tissue types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grignon N, Touraine B, Durand M (1989) 6(5) carboxyfluorescein as a tracer of phloem sap translocation. Am J Bot 76(6):871–877

    Article  CAS  Google Scholar 

  2. Knoblauch M, van Bel AJE (1998) Sieve tubes in action. Plant Cell 10(1):35–50

    Article  CAS  Google Scholar 

  3. Liesche J, Martens HJ, Schulz A (2011) Symplasmic transport and phloem loading in gymnosperm leaves. Protoplasma 248(1):181–190

    Article  CAS  Google Scholar 

  4. Martens HJ, Roberts AG, Oparka KJ, Schulz A (2006) Quantification of plasmodesmatal endoplasmic reticulum coupling between sieve elements and companion cells using fluorescence redistribution after photobleaching. Plant Physiol 142(2):471–480. https://doi.org/10.1104/pp.106.085803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Froelich DR, Mullendore DL, Jensen KH, Ross-Elliott TJ, Anstead JA, Thompson GA, Pélissier HC, Knoblauch M (2011) Phloem ultrastructure and pressure flow: Sieve-element-occlusion-related agglomerations do not affect translocation. Plant Cell 23(12):4428–4445. https://doi.org/10.1105/tpc.111.093179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oparka KJ, Duckett CM, Prior DAM, Fisher DB (1994) Real-time imaging of phloem unloading in the root tip of Arabidopsis. Plant J 6(5):759–766. https://doi.org/10.1046/j.1365-313X.1994.6050759.x

    Article  Google Scholar 

  7. Savage JA, Haines DF, Holbrook NM (2015) The making of giant pumpkins: How selective breeding changed the phloem of Cucurbita maxima from source to sink. Plant Cell Environ 38(8):1543–1554

    Article  CAS  Google Scholar 

  8. Roberts AG, Cruz SS, Roberts IM, Prior D, Turgeon R, Oparka KJ (1997) Phloem unloading in sink leaves of Nicotiana benthamiana: Comparison of a fluorescent solute with a fluorescent virus. Plant Cell 9(8):1381–1396. https://doi.org/10.1105/tpc.9.8.1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jensen KH, Lee J, Bohr T, Bruus H, Holbrook NM, Zwieniecki MA (2011) Optimality of the Munch mechanism for translocation of sugars in plants. J R Soc Interface 8(61):1155–1165. https://doi.org/10.1098/rsif.2010.0578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Savage JA, Zwieniecki MA, Holbrook NM (2013) Phloem transport velocity varies over time and among vacular bundles during early cucumber seedling development. Plant Physiol 163:1409–1418

    Article  CAS  Google Scholar 

  11. Carroll NJ, Jensen KH, Parsa S, Holbrook NM, Weitz DA (2014) Measurement of flow velocity and inference of liquid viscosity in a microfluidic channel by fluorescence photobleaching. Langmuir 30(16):4868–4874. https://doi.org/10.1021/la404891g

    Article  CAS  PubMed  Google Scholar 

  12. Knoblauch M, Vendrell M, de Leau E, Paterlini A, Knox K, Ross-Elliot T, Reinders A, Brockman SA, Ward J, Oparka K (2015) Multispectral phloem-mobile probes: properties and applications. Plant Physiol 167(4):1211–1220. https://doi.org/10.1104/pp.114.255414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wright KM, Oparka KJ (1996) The fluorescent probe HPTS as a phloem-mobile, symplastic tracer: An evaluation using confocal laser scanning microscopy. J Exp Bot 47(296):439–445

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Science Foundation Integrative Organismal Systems 1656318 (JAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica A. Savage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Savage, J.A., Zwieniecki, M.A. (2019). Measuring Phloem Transport Velocity on a Tissue Level Using a Phloem-Mobile Dye. In: Liesche, J. (eds) Phloem. Methods in Molecular Biology, vol 2014. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9562-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9562-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9561-5

  • Online ISBN: 978-1-4939-9562-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics