Skip to main content

In Vivo Veritas: Radiotracers in Studies of Phloem Transport of Carbohydrate

  • Protocol
  • First Online:
Phloem

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2014))

Abstract

Opportunities and challenges in the use of radiotracers to measure phloem transport are discussed, with an emphasis on noninvasive techniques to trace photoassimilate, carbon’s short-lived isotope 11C, and an eye to pitfalls and traps to avoid. We discuss in turn the rationale for using tracers, the limitations and complications with using short-lived radiotracers like 11C, the physics of decay and detection that need to be known when data are interpreted, and methods of analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross-Elliott TJ, Jensen KH, Haaning KS, Wager BM, Knoblauch J, Howell AH, Mullendore DL, Monteith AG, Paultre D, Yan D, Otero-Perez S, Bourdon M, Sager R, Lee J-Y, Helariutta Y, Knoblauch M, Oparka KJ (2017) Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. eLife 6:e24125. https://doi.org/10.7554/eLife.24125

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ohkubo Y, Tanaka M, Tabata R, Ogawa-Ohnishi M, Matsubayashi Y (2017) Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat Plants 3:17029. https://doi.org/10.1038/nplants.2017.29

    Article  CAS  PubMed  Google Scholar 

  3. Windt CW, Vergeldt FJ, De Jager PA, van As H (2006) MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ 29:1715–1729. https://doi.org/10.1111/j.1365-3040.2006.01544.x

    Article  CAS  PubMed  Google Scholar 

  4. Plain C, Gerant D, Maillard P, Dannoura M, Dong Y, Zeller B, Priault P, Parent F, Epron D (2009) Tracing of recently assimilated carbon in respiration at high temporal resolution in the field with a tuneable diode laser absorption spectrometer after in situ 13CO2 pulse labelling of 20-year-old beech trees. Tree Physiol 29:1433–1445

    Article  CAS  PubMed  Google Scholar 

  5. Pate JS, Shedley E, Arthur DJ, Admas M (1998) Spatial and temporal variations in phloem sap composition of plantation-grown Eucalyptus globulus. Oecologia 117(8–9):312–322

    Article  PubMed  Google Scholar 

  6. Kallarackal J, Bauer SN, Nowak H, Hajirezaei MR, Komor E (2012) Diurnal changes in assimilate concentrations and fluxes in the phloem of castor bean (Ricinus communis L.) and tansy (Tanacetum vulgare L.). Planta 236(1):209–223. https://doi.org/10.1007/s00425-012-1600-7

    Article  CAS  PubMed  Google Scholar 

  7. Högberg P, Högberg M, Göttlicher S, Betson N, Keel S, Metcalfe D, Campbell C, Schindlbacher A, Hurry V, Lundmark T (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177(1):220–228

    PubMed  Google Scholar 

  8. Dannoura M et al (2011) In situ assessment of the velocity of carbon transfer by tracing 13C in trunk CO2 efflux after pulse labelling: variations among tree species and seasons. New Phytol 190(1):181–192

    Article  CAS  PubMed  Google Scholar 

  9. Giaquinta R, Lin W, Sadler N, Franceschi V (1983) Pathway of phloem unloading in corn roots. Plant Physiol 72:362–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Minchin PEH, Thorpe MR (1989) Carbon partitioning to whole versus surgically modified ovules of pea: an application of the in vivo measurement of carbon flows over many hours using the short-lived isotope carbon-11. J Exp Bot 40(7):781–787. https://doi.org/10.1093/jxb/40.7.781

    Article  Google Scholar 

  11. Thorpe MR, Walsh KB, Minchin PEH (1998) Photoassimilate partitioning in nodulated soybean I. 11C methodology. J Exp Bot 49(328):1805–1815

    Article  CAS  Google Scholar 

  12. Minchin PEH, McNaughton GS (1987) Xylem transport of recently fixed carbon within Lupin. Aust J Plant Physiol 14(3):325–329

    CAS  Google Scholar 

  13. Ferrieri AP, Appel H, Ferrieri RA, Schultz JC (2012) Novel application of 2-[18F]fluoro-2-deoxy-d-glucose to study plant defenses. Nucl Med Biol 39(8):1152–1160. https://doi.org/10.1016/j.nucmedbio.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  14. Liu DD, Chao WM, Turgeon R (2012) Transport of sucrose, not hexose, in the phloem. J Exp Bot 63:4315–4320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tran TM, Hampton CS, Brossard TW, Harmata M, Robertson JD, Jurisson SS, Braun DM (2017) In vivo transport of three radioactive [18F]-fluorinated deoxysucrose analogs by the maize sucrose transporter ZmSUT1. Plant Physiol Biochem 115:1–11. https://doi.org/10.1016/j.plaphy.2017.03.006

    Article  CAS  PubMed  Google Scholar 

  16. Minchin PEH, Thorpe MR (1987) Measurement of unloading and reloading of photo-assimilate within the stem of bean. J Exp Bot 38:211–220

    Article  Google Scholar 

  17. Minchin PEH, Ryan KG, Thorpe MR (1984) Further evidence of apoplastic unloading into the stem of bean: identification of the phloem buffering pool. J Exp Bot 35(12):1744–1753. https://doi.org/10.1093/jxb/35.12.1744

    Article  Google Scholar 

  18. Epron D, Cabral OMR, Laclau J-P, Dannoura M, Packer AP, Plain C, Battie-Laclau P, Moreira MZ, Trivelin PCO, Bouillet J-P, Gérant D, Nouvellon Y (2016) In situ 13CO2 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon. Tree Physiol 36(1):6–21. https://doi.org/10.1093/treephys/tpv090

    Article  CAS  PubMed  Google Scholar 

  19. Roeb G, Britz SJ (1991) Short-term fluctuations in the transport of assimilates to the ear of wheat measured with steady-state 11C-CO2-labelling of the flag leaf. J Exp Bot 42(4):469–475. https://doi.org/10.1093/jxb/42.4.469

    Article  CAS  Google Scholar 

  20. Goeschl JD, Magnuson CE, Fares Y, Jaeger CH, Nelson CE, Strain BR (1984) Spontaneous and induced blocking and unblocking of phloem transport. Plant Cell Environ 7(8):607–613

    Google Scholar 

  21. Hubbell J, Seltzer S (2004) Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients (version 1.4). National Institute of Standards and Technology, Gaithersburg, MD, USA. http://physics.nist.gov/xaamdi. Accessed 21 Sept 2018

  22. Moorby J, Jarman P (1975) The use of compartmental analysis in the study of the movement of carbon through leaves. Planta 122:155–168

    Article  CAS  PubMed  Google Scholar 

  23. Farrar S, Farrar J (1986) Compartmentation and fluxes of sucrose in intact leaf blades of barley. New Phytol 103(4):645–657

    Article  CAS  Google Scholar 

  24. Geiger D, Swanson G (1965) Sucrose translocation in sugar beet. Plant Physiol 40:685–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Babst BA, Ferrieri RA, Gray DW, Lerdau M, Schlyer DJ, Schueller M, Thorpe MR, Orians CM (2005) Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus. New Phytol 167(1):63–72. https://doi.org/10.1111/j.1469-8137.2005.01388.x

    Article  CAS  PubMed  Google Scholar 

  26. Schmidt L, Hummel GM, Thiele B, Schurr U, Thorpe MR (2015) Leaf wounding or simulated herbivory in young N. attenuata plants reduces carbon delivery to roots and root tips. Planta 241:917–928. https://doi.org/10.1007/s00425-014-2230-z

    Article  CAS  PubMed  Google Scholar 

  27. Black MZ, Minchin PH, Gould N, Patterson KJ, Clearwater MJ (2012) Measurement of Bremsstrahlung radiation for in vivo monitoring of 14C tracer distribution between fruit and roots of kiwifruit (Actinidia arguta) cuttings. Planta 236(4):1327–1337. https://doi.org/10.1007/s00425-012-1685-z

    Article  CAS  PubMed  Google Scholar 

  28. Minchin PEH, Thorpe MR (1996) A method for monitoring γ-radiation from an extended source with uniform sensitivity. Appl Radiat Isot 47:693–696

    Article  CAS  Google Scholar 

  29. Pritchard J, Tomos AD, Farrar JF, Minchin PEH, Gould N, Paul MJ, MacRae EA, Ferrieri RA, Gray DW, Thorpe MR (2004) Turgor, solute import and growth in maize roots treated with galactose. Funct Plant Biol 31:1095–1103. https://doi.org/10.1071/FP04082

    Article  CAS  PubMed  Google Scholar 

  30. Levin C, Hoffman E (1999) Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 44:781–799

    Article  CAS  PubMed  Google Scholar 

  31. De Schepper V, BĂĽhler J, Thorpe M, Roeb G, Huber G, van Dusschoten D, Jahnke S, Steppe K (2013) 11C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling. Front Plant Sci 4:200. https://doi.org/10.3389/fpls.2013.00200

    Article  PubMed  PubMed Central  Google Scholar 

  32. Karve AA, Alexoff D, Kim D, Schueller MJ, Ferrieri RA, Babst BA (2015) In vivo quantitative imaging of photoassimilate transport dynamics and allocation in large plants using a commercial positron emission tomography (PET) scanner. BMC Plant Biol 15:273. https://doi.org/10.1186/s12870-015-0658-3

    Article  PubMed  PubMed Central  Google Scholar 

  33. Alexoff DL, Dewey SL, Vaska P, Krishnamoorthy S, Ferrieri R, Schueller M, Schlyer DJ, Fowler JS (2011) PET imaging of thin objects: measuring the effects of positron range and partial-volume averaging in the leaf of Nicotiana tabacum. Nucl Med Biol 38(2):191–200. https://doi.org/10.1016/j.nucmedbio.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  34. Bühler J, Huber G, Schmid F, Blümler P (2011) Analytical model for long-distance tracer-transport in plants. J Theor Biol 270:70–79. https://doi.org/10.1016/j.jtbi.2010.11.005

    Article  PubMed  Google Scholar 

  35. Evans NTS, Ebert M, Moorby J (1963) A model for the translocation of the photosynthesis in the soybean. J Exp Bot 14:221–231

    Article  CAS  Google Scholar 

  36. Bühler J, von Lieres E, Huber G (2014) A class of compartmental models for long-distance tracer transport in plants. J Theor Biol 341:131–142. https://doi.org/10.1016/j.jtbi.2013.09.023

    Article  PubMed  Google Scholar 

  37. Minchin PEH, Thorpe MR (2003) Using the short-lived isotope C-11 in mechanistic studies of photosynthate transport. Funct Plant Biol 30(8):831–841. https://doi.org/10.1071/FP03008

    Article  CAS  PubMed  Google Scholar 

  38. Pickard WF, Minchin PEH, Thorpe MR (1993) Leaf export and partitioning changes induced by short-term inhibition of phloem transport. J Exp Bot 44(9):1491–1496. https://doi.org/10.1093/jxb/44.9.1491

    Article  Google Scholar 

  39. Pickard WF, Minchin PEH (1990) The transient inhibition of phloem translocation in Phaseolus vulgaris by abrupt temperature drops, vibration, and electric shock. J Exp Bot 41:1361–1369

    Article  Google Scholar 

  40. Strulab D, Santin G, Lazaro D, Breton V, Morel C (2003) GATE (geant4 application for tomographic emission): a PET/SPECT general-purpose simulation platform. Nuclear Phys B Proc Suppl 125:75–79. https://doi.org/10.1016/S0920-5632(03)90969-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Thorpe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thorpe, M.R., Minchin, P.E.H. (2019). In Vivo Veritas: Radiotracers in Studies of Phloem Transport of Carbohydrate. In: Liesche, J. (eds) Phloem. Methods in Molecular Biology, vol 2014. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9562-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9562-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9561-5

  • Online ISBN: 978-1-4939-9562-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics