Skip to main content

Citrus tristeza virus: Host RNA Silencing and Virus Counteraction

  • Protocol
  • First Online:
Book cover Citrus Tristeza Virus

Abstract

To dissect the host RNA silencing response incited by citrus tristeza virus (CTV, genus Closterovirus), a (+) ssRNA of ~19300 nt, and the counter reaction deployed by the virus via its three RNA silencing suppressors (RSS), the small RNAs (sRNAs) of three virus-host combinations were deep sequenced. The subsequent analysis indicated that CTV sRNAs (1) constitute more than half of the total sRNAs in the susceptible Mexican lime and sweet orange, while only 3.5% in the restrictive sour orange; (2) are mostly of 21–22 nt, with those of (+) sense predominating slightly; and (3) derive from all the CTV genome, as evidenced by its entire recomposition from viral sRNA contigs but adopt an asymmetric pattern with a hotspot mapping at the 3′-terminal ~2500 nt. The citrus homologues of Arabidopsis Dicer-like (DCL) 4 and 2 most likely generate the 21 and 22 nt CTV sRNAs, respectively, by dicing the gRNA and the 3′ co-terminal sgRNAs and, particularly, their double-stranded forms accumulating in infected cells. The plant sRNA profile, very similar and dominated by the 24 nt sRNAs in the three mock-inoculated controls, displayed a major reduction of the 24 nt sRNAs in Mexican lime and sweet orange, but not in sour orange. CTV infection also influences the levels of certain microRNAs.

The high accumulation of CTV sRNAs in two of the citrus hosts examined suggests that it is not their synthesis, but their function, the target of the RSS encoded by CTV: p25 (intercellular), p23 (intracellular) and p20 (both). The two latter might block the loading of CTV sRNAs into the RNA silencing complex or interfere with it through alternative mechanisms. Of the three CTV RSS, p23 is the one that has been more thoroughly studied. It is a multifunctional RNA-binding protein with a putative Zn finger domain and basic motifs that (1) has no homologues in other closteroviruses, (2) accumulates in the nucleolus and plasmodesmata, (3) regulates the asymmetric balance of CTV (+) and (−) RNA strands, and (4) induces CTV syndromes and stimulates systemic infection in certain citrus species when expressed as a transgene ectopically or in phloem-associated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bar-Joseph M, Garnsey SM, Gonsalves D (1979) The closteroviruses: a distinct group of elongated plant viruses. Adv Virus Res 25:93–168

    Article  CAS  PubMed  Google Scholar 

  2. Moreno P, Ambrós S, Albiach-Martí MR et al (2008) Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9:251–268

    Article  CAS  PubMed  Google Scholar 

  3. Dawson WO, Garnsey SM, Tatineni S et al (2013) Citrus tristeza virus-host interactions. Front Microbiol 4:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pappu HR, Karasev AV, Anderson EJ et al (1994) Nucleotide sequence and organization of eight 3′ open reading frames of the citrus tristeza closterovirus genome. Virology 199:35–46

    Article  CAS  PubMed  Google Scholar 

  5. Karasev AV, Boyko VP, Gowda S et al (1995) Complete sequence of the Citrus tristeza virus RNA genome. Virology 208:511–520

    Article  CAS  PubMed  Google Scholar 

  6. Mawassi M, Mietkiewska E, Gofman R et al (1996) Unusual sequence relationships between two isolates of Citrus tristeza virus. J Gen Virol 77:2359–2364

    Article  CAS  PubMed  Google Scholar 

  7. Vives MC, Rubio L, López C et al (1999) The complete genome sequence of the major component of a mild Citrus tristeza virus isolate. J Gen Virol 80:811–816

    Article  CAS  PubMed  Google Scholar 

  8. Yang ZN, Mathews DH, Dodds JA et al (1999) Molecular characterization of an isolate of Citrus tristeza virus that causes severe symptoms in sweet orange. Virus Genes 19:131–142

    Article  CAS  PubMed  Google Scholar 

  9. Hilf M, Karasev AV, Pappu HR et al (1995) Characterization of Citrus tristeza virus subgenomic RNAs in infected tissue. Virology 208:576–582

    Article  CAS  PubMed  Google Scholar 

  10. Satyanarayana T, Gowda S, Mawassi M et al (2000) Closterovirus encoded HSP70 homolog and p61 in addition to both coat proteins function in efficient virion assembly. Virology 278:253–265

    Article  CAS  PubMed  Google Scholar 

  11. Sekiya ME, Lawrence SD, Mccaffery M et al (1991) Molecular cloning and nucleotide sequencing of the coat protein gene of Citrus tristeza virus. J Gen Virol 72:1013–1020

    Article  CAS  PubMed  Google Scholar 

  12. Febres VJ, Pappu HR, Anderson EJ et al (1994) The diverged copy of the Citrus tristeza virus coat protein is expressed in vivo. Virology 201:178–181

    Article  CAS  PubMed  Google Scholar 

  13. Febres VJ, Ashoulin L, Mawassi M et al (1996) The p27 protein is present at one end of Citrus tristeza virus particles. Phytopathology 86:1331–1335

    CAS  Google Scholar 

  14. Satyanarayana T, Gowda S, Ayllon M et al (2004) Closterovirus bipolar virion: Evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. Proc Natl Acad Sci U S A 101:799–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang SH, Atallah OO, Sun YD et al (2018) Functional diversification upon leader protease domain duplication in the Citrus tristeza virus genome: Role of RNA sequences and the encoded proteins. Virology 514:192–202

    Article  CAS  PubMed  Google Scholar 

  16. Gowda S, Satyanarayana T, Davis CL et al (2000) The p20 gene product of Citrus tristeza virus accumulates in the amorphous inclusion bodies. Virology 274:246–254

    Article  CAS  PubMed  Google Scholar 

  17. López C, Navas-Castillo J, Gowda S et al (2000) The 23 kDa protein coded by the 3′-terminal gene of Citrus tristeza virus is an RNA-binding protein. Virology 269:462–470

    Article  PubMed  Google Scholar 

  18. Satyanarayana T, Gowda S, Ayllon MA et al (2002a) The p23 protein of Citrus tristeza virus controls asymmetrical RNA accumulation. J Virol 76:473–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghorbel R, López C, Fagoaga C et al (2001) Transgenic citrus plants expressing the Citrus tristeza virus p23 protein exhibit viral-like symptoms. Mol Plant Pathol 2:27–36

    Article  CAS  PubMed  Google Scholar 

  20. Fagoaga C, Lopez C, Moreno P et al (2005) Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus are citrus specific and do not correlate with the pathogenicity of the virus strain. Mol Plant-Microbe Interact 18:435–445

    Article  CAS  PubMed  Google Scholar 

  21. Fagoaga C, Lopez C, de Mendoza AH et al (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol 60:153–165

    Article  CAS  PubMed  Google Scholar 

  22. Soler N, Fagoaga C, Lopez C et al (2015) Symptoms induced by transgenic expression of p23 from Citrus tristeza virus in phloem-associated cells of Mexican lime mimic virus infection without the aberrations accompanying constitutive expression. Mol Plant Pathol 16:388–399

    Article  CAS  PubMed  Google Scholar 

  23. Soler N, Plomer M, Fagoaga C et al (2012) Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. Plant Biotechnol J 10:597–608

    Article  CAS  PubMed  Google Scholar 

  24. Tatineni S, Robertson CJ, Garnsey SM et al (2008) Three genes of Citrus tristeza virus are dispensable for infection and movement throughout some varieties of citrus trees. Virology 376:297–307

    Article  CAS  PubMed  Google Scholar 

  25. Tatineni S, Robertson CJ, Garnsey SM et al (2011) A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proc Natl Acad Sci U S A 108:17366–17371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tatineni S, Dawson WO (2012) Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus. J Virol 86:7850–7857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Folimonova SY (2012) Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J Virol 86:5554–5561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Atallah OO, Kang SH, El-Mohtar C et al (2016) A 5′-proximal region of the Citrus tristeza virus genome encoding two leader proteases is involved in virus superinfection exclusion. Virology 489:108–115

    Article  CAS  PubMed  Google Scholar 

  29. López C, Ayllón MA, Navas-Castillo J et al (1998) Sequence polymorphism in the 5′ and 3′ terminal regions of tristeza virus RNA. Phytopathology 88:685–691

    Article  PubMed  Google Scholar 

  30. Satyanarayana T, Gowda S, Ayllon MA et al (2002b) Mutational analysis of the replication signals in the 3′-nontranslated region of Citrus tristeza virus. Virology 300:140–152

    Article  CAS  PubMed  Google Scholar 

  31. Ayllón MA, López C, Navas-Castillo J et al (2001) Polymorphism of the 5′-terminal region of Citrus tristeza virus (CTV) RNA: Incidence of three sequence types in isolates of different origin and pathogenicity. Arch Virol 146:27–40

    Article  PubMed  Google Scholar 

  32. Gowda S, Satyanarayana T, Ayllón MA et al (2003) The conserved structures of the 5′ nontranslated region of Citrus tristeza virus are involved in replication and virion assembly. Virology 317:50–64

    Article  CAS  PubMed  Google Scholar 

  33. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Molnar A, Csorba T, Lakatos L et al (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 79:7812–7818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19:421–428

    Article  CAS  PubMed  Google Scholar 

  36. Dalmay T, Hamilton A, Rudd S et al (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553

    Article  CAS  PubMed  Google Scholar 

  37. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  PubMed  Google Scholar 

  38. Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22:3879–3889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma Z, Zhang X (2018) Actions of plant Argonautes: predictable or unpredictable? Curr Opin Plant Biol 45:59–67

    Article  CAS  PubMed  Google Scholar 

  40. Omarov RT, Cioperlik JJ, Sholthof HB (2007) RNAi-associated ssRNA-specific ribonucleases in tombusvirus P19 mutant-infected plants and evidence for a discrete siRNA-containing effector complex. Proc Natl Acad Sci U S A 104:1714–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pantaleo V, Szittya G, Burgyán J (2007) Molecular bases of viral RNA targeting by viral small interfering RNA-programmed RISC. J Virol 81:3797–3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644

    Article  CAS  PubMed  Google Scholar 

  43. Csorba T, Kontra L, Burgyán J (2015) Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479-480:85–103

    Article  CAS  PubMed  Google Scholar 

  44. Díaz-Pendón JA, Ding SW (2008) Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annu Rev Phytopathol 46:303–326

    Article  PubMed  Google Scholar 

  45. Kontra L, Csorba T, Tavazza M et al (2016) Distinct effects of p19 RNA silencing suppressor on small RNA mediated pathways in plants. PloS Path 12:e1005935

    Article  Google Scholar 

  46. Ruiz-Ruiz S, Navarro B, Gisel A et al (2011) Citrus tristeza virus infection induces the accumulation of viral small RNAs (21-24-nt) mapping preferentially at the 3′-terminal region of the genomic RNA and affects the host small RNA profile. Plant Mol Biol 75:607–619

    Article  CAS  PubMed  Google Scholar 

  47. Dolgosheina EV, Morin RD, Aksay G et al (2008) Conifers have a unique small RNA silencing signature. RNA 14:1508–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morin RD, Aksay G, Dolgosheina E et al (2008) Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res 18:571–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mi S, Cai T, Hu Y et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Montgomery TA, Howell MD, Cuperus JT et al (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141

    Article  CAS  PubMed  Google Scholar 

  51. Donaire L, Wang Y, González-Ibeas D et al (2009) Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–214

    Article  CAS  PubMed  Google Scholar 

  52. Kreuze JF, Pérez A, Untiveros M et al (2009) Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1–7

    Article  CAS  PubMed  Google Scholar 

  53. Moreno P, Guerri J, Muñoz N (1990) Identification of Spanish strains of Citrus tristeza virus (CTV) by analysis of double-stranded RNAs. Phytopathology 80:477–482

    Article  CAS  Google Scholar 

  54. Aramburu J, Navas-Castillo J, Moreno P et al (1991) Detection of double-stranded RNA by ELISA and dot immunobinding assay using an antiserum to synthetic polynucleotides. J Virol Methods 33:1–11

    Article  CAS  PubMed  Google Scholar 

  55. Bar-Joseph M, Dawson WO (2008) Citrus tristeza virus. In: Mahy BWJ, Van Regenmortel MHV (eds) Encyclopedia of virology, 3rd edn. Elsevier, Oxford, pp 520–525

    Chapter  Google Scholar 

  56. Folimonova SY, Harper SJ, Leonard MT et al (2014) Superinfection exclusion by Citrus tristeza virus does not correlate with the production of viral small RNAs. Virology 468-470:462–471

    Article  CAS  PubMed  Google Scholar 

  57. Licciardello G, Scuderi G, Ferraro R et al (2015) Deep sequencing and analysis of small RNAs in sweet orange grafted on sour orange infected with two Citrus tristeza virus isolates prevalent in Sicily. Arch Virol 160:2583–2589

    Article  CAS  PubMed  Google Scholar 

  58. Matsumura EE, Coletta-Filho HD, Nouri S et al (2017) Deep sequencing analysis of RNAs from citrus plants grown in a citrus sudden death-affected area reveals diverse known and putative novel viruses. Viruses 9:92

    Article  PubMed Central  Google Scholar 

  59. Yokomi RK, Selvaraj V, Maheshwari Y et al (2017) Identification and characterization of Citrus tristeza virus isolates breaking resistance in trifoliate orange in California. Phytopathology 107:901–908

    Article  CAS  PubMed  Google Scholar 

  60. Visser M, Cook G, Burger JT et al (2017) In silico analysis of the grapefruit sRNAome, transcriptome and gene regulation in response to CTV-CDVd co-infection. Virol J 14:200

    Article  PubMed  PubMed Central  Google Scholar 

  61. Song C, Fang J, Li X et al (2007) Identification and characterization of 27 conserved microRNAs in citrus. Planta 230:671–685

    Article  Google Scholar 

  62. Morel JB, Godon C, Mourrain P et al (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in posttranscriptional gene silencing and virus resistance. Plant Cell 14:629–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qu F, Ye X, Morris TJ (2008) Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci U S A 105:14732–14737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vaucheret H, Mallory AC, Bartel DP (2006) AGO1 homeostasis entails coexpression of miR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Varallyay E, Valoczi A, Agyi A et al (2010) Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J 29:3507–3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang ZN, Ye XR, Molina J et al (2003) Sequence analysis of a 282-kilobase region surrounding the Citrus tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiol 131:482–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu R, Folimonov A, Shintaku M et al (2004) Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci U S A 101:15742–15747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Flores R, Ruiz-Ruiz S, Soler N et al (2013) Citrus tristeza virus p23: a unique protein mediating key virus-host interactions. Front Microbiol 4:98

    PubMed  PubMed Central  Google Scholar 

  70. Ruiz-Ruiz S, Soler N, Sánchez-Navarro J et al (2013) Citrus tristeza virus p23: determinants for nucleolar localization and their influence on suppression of RNA silencing and pathogenesis. Mol Plant-Microbe Interact 26:306–318

    Article  CAS  PubMed  Google Scholar 

  71. López C, Cervera M, Fagoaga C et al (2010) Accumulation of transgene-derived siRNAs is not sufficient for RNAi-mediated protection against Citrus tristeza virus (CTV) in transgenic Mexican lime. Mol Plant Pathol 11:33–41

    Article  PubMed  Google Scholar 

  72. Chiba M, Reed JC, Prokhnevsky AI et al (2006) Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology 346:7–14

    Article  CAS  PubMed  Google Scholar 

  73. Albiach-Marti MR, Robertson C, Gowda S et al (2010) The pathogenicity determinant of Citrus tristeza virus causing the seedling yellows syndrome maps at the 3′-terminal region of the viral genome. Mol Plant Pathol 11:55–67

    Article  CAS  PubMed  Google Scholar 

  74. Fagoaga C, Pensabene-Bellavia G, Moreno P et al (2011) Ectopic expression of the p23 silencing suppressor of Citrus tristeza virus differentially modifies viral accumulation and tropism in two transgenic woody hosts. Mol Plant Pathol 12:898–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sambade A, López C, Rubio L et al (2003) Polymorphism of a specific region in gene p23 of Citrus tristeza virus allows discrimination between mild and severe isolates. Arch Virol 148:2325–2340

    Article  CAS  PubMed  Google Scholar 

  76. Ruiz-Ruiz S, Spàno R, Navarro L et al (2018) Citrus tristeza virus co-opts glyceraldehyde 3-phosphate dehydrogenase for its infectious cycle by interacting with the viral-encoded protein p23. Plant Mol Biol 98:363–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant (Prometeo/2008/121) from the Generalitat Valenciana, Spain, and by a grant (AGL2009-08052) from the Ministerio de Ciencia e Innovación-Fondo Europeo de Desarrollo Regional. S. Ruiz-Ruiz was additionally supported by a postdoctoral contract from the Generalitat Valenciana (APOSTD/2012/020, Program VALi+d).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Flores .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ruiz-Ruiz, S. et al. (2019). Citrus tristeza virus: Host RNA Silencing and Virus Counteraction. In: Catara, A., Bar-Joseph, M., Licciardello, G. (eds) Citrus Tristeza Virus. Methods in Molecular Biology, vol 2015. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9558-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9558-5_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9557-8

  • Online ISBN: 978-1-4939-9558-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics