Skip to main content

Bipolar Disorder: Its Etiology and How to Model in Rodents

  • Protocol
  • First Online:
Psychiatric Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2011))

Abstract

Characterized by the switch of manic and depressive phases, bipolar disorder was described as early as the fifth century BC. Nevertheless up to date, the underlying neurobiology is still largely unclear, assuming a multifactor genesis with both biological-genetic and psychosocial factors. Significant process has been achieved in recent years in researching the causes of bipolar disorder with modern molecular biological (e.g., genetic and epigenetic studies) and imaging techniques (e.g., positron emission tomography (PET) and functional magnetic resonance imaging (fMRI)). In this chapter we will first summarize our recent knowledge on the etiology of bipolar disorder. We then discuss how several factors observed to contribute to bipolar disorder in human patients can be manipulated to generate rodent models for bipolar disorder. Finally, we will give an overview on behavioral test that can be used to assess bipolar-disorder-like behavior in rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kieseppä T, Partonen T, Haukka J, Kaprio J, Lönnqvist J (2004) High concordance of bipolar I disorder in a nationwide sample of twins. Am J Psychiatry 161:1814–1821

    Article  PubMed  Google Scholar 

  2. Kato T, Kunugi H, Nanko S, Kato N (2000) Association of bipolar disorder with the 5178 polymorphism in mitochondrial DNA. Am J Med Genet 96:182–186

    Article  CAS  PubMed  Google Scholar 

  3. Schulze TG (2010) Genetic research into bipolar disorder: the need for a research framework that integrates sophisticated molecular biology and clinically informed phenotype characterization. Psychiatr Clin North Am 33:67–82

    Article  PubMed  PubMed Central  Google Scholar 

  4. Budde M, Forstner AJ, Adorjan K, Schaupp SK, Nöthen MM, Schulze TG (2017) Genetische Grundlagen der bipolaren Störung. Nervenarzt 88:755–759

    Article  CAS  PubMed  Google Scholar 

  5. Ludwig B, Dwivedi Y (2016) Dissecting bipolar disorder complexity through epigenomic approach. Mol Psychiatry 21:1490–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Colombo C, Benedetti F, Barbini B, Campori E, Smeraldi E (1999) Rate of switch from depression into mania after therapeutic sleep deprivation in bipolar depression. Psychiatry Res 86:267–270

    Article  CAS  PubMed  Google Scholar 

  7. Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290

    Article  CAS  PubMed  Google Scholar 

  8. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry J-M (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109:143–148

    Article  CAS  PubMed  Google Scholar 

  9. Ising M, Holsboer F (2006) Genetics of stress response and stress-related disorders. Dialogues Clin Neurosci 8:433–444

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gould TD, Manji HK (2002) The Wnt signaling pathway in bipolar disorder. Neuroscientist 8:497–511

    Article  CAS  PubMed  Google Scholar 

  11. Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522

    Article  CAS  PubMed  Google Scholar 

  12. Elhwuegi AS (2004) Central monoamines and their role in major depression. Prog Neuropsychopharmacol Biol Psychiatry 28:435–451

    Article  CAS  PubMed  Google Scholar 

  13. Baumann B, Bogerts B (2001) Neuroanatomical studies on bipolar disorder. Br J Psychiatry Suppl 41:s142–s147

    Article  CAS  PubMed  Google Scholar 

  14. Bauer M, Juckel G, Correll CU, Leopold K, Pfennig A (2008) Diagnosis and treatment in the early illness phase of bipolar disorders. Eur Arch Psychiatry Clin Neurosci 258:50–54

    Article  PubMed  Google Scholar 

  15. Bauer M, London ED, Silverman DH, Rasgon N, Kirchheiner J, Whybrow PC (2003) Thyroid, brain and mood modulation in affective disorder: insights from molecular research and functional brain imaging. Pharmacopsychiatry 36(Suppl 3):S215–S221

    CAS  PubMed  Google Scholar 

  16. Bauer M, London ED, Rasgon N, Berman SM, Frye MA, Altshuler LL, Mandelkern MA, Bramen J, Voytek B, Woods R, Mazziotta JC, Whybrow PC (2005) Supraphysiological doses of levothyroxine alter regional cerebral metabolism and improve mood in bipolar depression. Mol Psychiatry 10:456–469

    Article  CAS  PubMed  Google Scholar 

  17. Bauer M (2002) Thyroid hormone augmentation with levothyroxine in bipolar depression. Bipolar Disord 4(Suppl 1):109–110

    Article  PubMed  Google Scholar 

  18. Bauer M, Papenbrock J (2002) Identification and characterization of single-domain thiosulfate sulfurtransferases from Arabidopsis thaliana. FEBS Lett 532:427–431

    Article  CAS  PubMed  Google Scholar 

  19. Hallahan B, Newell J, Soares JC, Brambilla P, Strakowski SM, Fleck DE, Kieseppä T, Altshuler LL, Fornito A, Malhi GS, McIntosh AM, Yurgelun-Todd DA, Labar KS, Sharma V, MacQueen GM, Murray RM, McDonald C (2011) Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega-analysis of individual adult patient data. Biol Psychiatry 69:326–335

    Article  PubMed  Google Scholar 

  20. Meyer TD, Finucane L, Jordan G (2011) Is risk for mania associated with increased daydreaming as a form of mental imagery? J Affect Disord 135:380–383

    Article  PubMed  Google Scholar 

  21. Mansell W, Pedley R (2008) The ascent into mania: a review of psychological processes associated with the development of manic symptoms. Clin Psychol Rev 28:494–520

    Article  PubMed  Google Scholar 

  22. Searson R, Mansell W, Lowens I, Tai S (2012) Think Effectively About Mood Swings (TEAMS): a case series of cognitive-behavioural therapy for bipolar disorders. J Behav Ther Exp Psychiatry 43:770–779

    Article  PubMed  Google Scholar 

  23. Juckel G, Hegerl U, Mavrogiorgou P, Gallinat J, Mager T, Tigges P, Dresel S, Schröter A, Stotz G, Meller I, Greil W, Möller HJ (2000) Clinical and biological findings in a case with 48-hour bipolar ultrarapid cycling before and during valproate treatment. J Clin Psychiatry 61:585–593

    Article  CAS  PubMed  Google Scholar 

  24. Jaenisch R, Mintz B (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci U S A 71:1250–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. LePage DF, Conlon RA (2006) Animal models for disease: knockout, knock-in, and conditional mutant mice. Methods Mol Med 129:41–67

    CAS  PubMed  Google Scholar 

  26. Beyer DKE, Freund N (2017) Animal models for bipolar disorder: from bedside to the cage. Int J Bipolar Disord 5:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zan Y, Haag JD, Chen K-S, Shepel LA, Wigington D, Wang Y-R, Hu R, Lopez-Guajardo CC, Brose HL, Porter KI, Leonard RA, Hitt AA, Schommer SL, Elegbede AF, Gould MN (2003) Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nat Biotechnol 21:645–651

    Article  CAS  PubMed  Google Scholar 

  28. Manis JP (2007) Knock out, knock in, knock down—genetically manipulated mice and the Nobel prize. N Engl J Med 357:2426–2429

    Article  CAS  PubMed  Google Scholar 

  29. Feng W, Liu H-K, Kawauchi D (2018) CRISPR-engineered genome editing for the next generation neurological disease modeling. Prog Neuropsychopharmacol Biol Psychiatry 81:459–467

    Article  CAS  PubMed  Google Scholar 

  30. Howarth JL, Lee YB, Uney JB (2010) Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells). Cell Biol Toxicol 26:1–20

    Article  CAS  PubMed  Google Scholar 

  31. Coque L, Mukherjee S, Cao J-L, Spencer S, Marvin M, Falcon E, Sidor MM, Birnbaum SG, Graham A, Neve RL, Gordon E, Ozburn AR, Goldberg MS, Han M-H, Cooper DC, McClung CA (2011) Specific role of VTA dopamine neuronal firing rates and morphology in the reversal of anxiety-related, but not depression-related behavior in the ClockΔ19 mouse model of mania. Neuropsychopharmacology 36:1478–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McClung CA (2013) How might circadian rhythms control mood? Let me count the ways… . Biol Psychiatry 74:242–249

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mukherjee S, Coque L, Cao J-L, Kumar J, Chakravarty S, Asaithamby A, Graham A, Gordon E, Enwright JF, DiLeone RJ, Birnbaum SG, Cooper DC, McClung CA (2010) Knockdown of Clock in the ventral tegmental area through RNA interference results in a mixed state of mania and depression-like behavior. Biol Psychiatry 68:503–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, Chakravarty S, Peevey J, Oehrlein N, Birnbaum S, Vitaterna MH, Orsulak P, Takahashi JS, Nestler EJ, Carlezon WA, McClung CA (2007) Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci U S A 104:6406–6411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Enkhuizen J, Minassian A, Young JW (2013) Further evidence for ClockΔ19 mice as a model for bipolar disorder mania using cross-species tests of exploration and sensorimotor gating. Behav Brain Res 249:44–54

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kernie SG, Liebl DJ, Parada LF (2000) BDNF regulates eating behavior and locomotor activity in mice. EMBO J 19:1290–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lyons WE, Mamounas LA, Ricaurte GA, Coppola V, Reid SW, Bora SH, Wihler C, Koliatsos VE, Tessarollo L (1999) Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci U S A 96:15239–15244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Magariños AM, Li CJ, Gal Toth J, Bath KG, Jing D, Lee FS, McEwen BS (2011) Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus 21:253–264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Engel SR, Creson TK, Hao Y, Shen Y, Maeng S, Nekrasova T, Landreth GE, Manji HK, Chen G (2008) The extracellular signal-regulated kinase pathway contributes to the control of behavioral excitement. Mol Psychiatry 14:448–461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Dulcis D, Jamshidi P, Leutgeb S, Spitzer NC (2013) Neurotransmitter switching in the adult brain regulates behavior. Science 340:449–453

    Article  CAS  PubMed  Google Scholar 

  41. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  CAS  PubMed  Google Scholar 

  42. Ralph RJ, Paulus MP, Fumagalli F, Caron MG, Geyer MA (2001) Prepulse inhibition deficits and perseverative motor patterns in dopamine transporter knock-out mice: differential effects of D1 and D2 receptor antagonists. J Neurosci 21:305–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ralph-Williams RJ, Paulus MP, Zhuang X, Hen R, Geyer MA (2003) Valproate attenuates hyperactive and perseverative behaviors in mutant mice with a dysregulated dopamine system. Biol Psychiatry 53:352–359

    Article  CAS  PubMed  Google Scholar 

  44. van Enkhuizen J, Henry BL, Minassian A, Perry W, Milienne-Petiot M, Higa KK, Geyer MA, Young JW (2014) Reduced dopamine transporter functioning induces high-reward risk-preference consistent with bipolar disorder. Neuropsychopharmacology 39:3112–3122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. van Enkhuizen J, Geyer MA, Halberstadt AL, Zhuang X, Young JW (2014) Dopamine depletion attenuates some behavioral abnormalities in a hyperdopaminergic mouse model of bipolar disorder. J Affect Disord 155:247–254

    Article  PubMed  CAS  Google Scholar 

  46. Young JW, van Enkhuizen J, Winstanley CA, Geyer MA (2011) Increased risk-taking behavior in dopamine transporter knockdown mice: further support for a mouse model of mania. J Psychopharmacol 25:934–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Young JW, Goey AKL, Minassian A, Perry W, Paulus MP, Geyer MA (2010) The mania-like exploratory profile in genetic dopamine transporter mouse models is diminished in a familiar environment and reinstated by subthreshold psychostimulant administration. Pharmacol Biochem Behav 96:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhuang X, Oosting RS, Jones SR, Gainetdinov RR, Miller GW, Caron MG, Hen R (2001) Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci U S A 98:1982–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Freund N, Thompson BS, Sonntag K, Meda S, Andersen SL (2016) When the party is over: depressive-like states in rats following termination of cortical D1 receptor overexpression. Psychopharmacology 233:1191–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sonntag KC, Brenhouse HC, Freund N, Thompson BS, Puhl M, Andersen SL (2014) Viral over-expression of D1 dopamine receptors in the prefrontal cortex increase high-risk behaviors in adults: comparison with adolescents. Psychopharmacology. https://doi.org/10.1007/s00213-013-3399-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Benedetti F, Fresi F, Maccioni P, Smeraldi E (2008) Behavioural sensitization to repeated sleep deprivation in a mice model of mania. Behav Brain Res 187:221–227

    Article  PubMed  Google Scholar 

  52. Gessa GL, Pani L, Fadda P, Fratta W (1995) Sleep deprivation in the rat: an animal model of mania. Eur Neuropsychopharmacol 5(Suppl 1):89–93

    Article  CAS  PubMed  Google Scholar 

  53. Hicks RA, Moore JD, Hayes C, Phillips N, Hawkins J (1979) REM sleep deprivation increases aggressiveness in male rats. Physiol Behav 22:1097–1100

    Article  CAS  PubMed  Google Scholar 

  54. Morden B, Mullins R, Levine S, Cohen H, Dement W (1968) Effect of REM deprivation on the mating behavior of male rats. Psychophysiology 5:241–242

    Google Scholar 

  55. Young JW, Cope ZA, Romoli B, Schrurs E, Joosen A, Enkhuizen J, Sharp RF, Dulcis D (2018) Mice with reduced DAT levels recreate seasonal-induced switching between states in bipolar disorder. Neuropsychopharmacology. https://doi.org/10.1038/s41386-018-0031-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Borison RL, Sabelli HC, Maple PJ, Havdala HS, Diamond BI (1978) Lithium prevention of amphetamine-induced ‘manic’ excitement and of reserpine-induced ‘depression’ in mice: possible role of 2-phenylethylamine. Psychopharmacology 59:259–262

    Article  CAS  PubMed  Google Scholar 

  57. Davies C, Sanger DJ, Steinberg H, Tomkiewicz M, U’Prichard DC (1974) Lithium and alpha-methyl-p-tyrosine prevent “manic” activity in rodents. Psychopharmacologia 36:263–274

    Article  CAS  PubMed  Google Scholar 

  58. Frey BN, Valvassori SS, Réus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 31:326–332

    PubMed  PubMed Central  Google Scholar 

  59. Fries GR, Valvassori SS, Bock H, Stertz L, Magalhães PV, Mariot E, Varela RB, Kauer-Sant’Anna M, Quevedo J, Kapczinski F, Saraiva-Pereira ML (2015) Memory and brain-derived neurotrophic factor after subchronic or chronic amphetamine treatment in an animal model of mania. J Psychiatr Res 68:329–336

    Article  PubMed  Google Scholar 

  60. Gould TJ, Keith RA, Bhat RV (2001) Differential sensitivity to lithium’s reversal of amphetamine-induced open-field activity in two inbred strains of mice. Behav Brain Res 118:95–105

    Article  CAS  PubMed  Google Scholar 

  61. Kilbey MM, Ellinwood EH (1977) Reverse tolerance to stimulant-induced abnormal behavior. Life Sci 20:1063–1075

    Article  CAS  PubMed  Google Scholar 

  62. Macêdo DS, de Lucena DF, Queiroz AIG, Cordeiro RC, Araújo MM, Sousa FC, Vasconcelos SM, Hyphantis TN, Quevedo J, McIntyre RS, Carvalho AF (2013) Effects of lithium on oxidative stress and behavioral alterations induced by lisdexamfetamine dimesylate: relevance as an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 43:230–237

    Article  PubMed  CAS  Google Scholar 

  63. Macêdo DS, Medeiros CD, Cordeiro RC, Sousa FC, Santos JV, Morais TA, Hyphantis TN, McIntyre RS, Quevedo J, Carvalho AF (2012) Effects of alpha-lipoic acid in an animal model of mania induced by d-amphetamine. Bipolar Disord 14:707–718

    Article  PubMed  CAS  Google Scholar 

  64. Rezin GT, Furlanetto CB, Scaini G, Valvassori SS, Gonçalves CL, Ferreira GK, Jeremias IC, Resende WR, Cardoso MR, Varela RB, Quevedo J, Streck EL (2014) Fenproporex increases locomotor activity and alters energy metabolism, and mood stabilizers reverse these changes: a proposal for a new animal model of mania. Mol Neurobiol 49:877–892

    Article  CAS  PubMed  Google Scholar 

  65. Rygula R, Szczech E, Kregiel J, Golebiowska J, Kubik J, Popik P (2015) Cognitive judgment bias in the psychostimulant-induced model of mania in rats. Psychopharmacology 232:651–660

    Article  CAS  PubMed  Google Scholar 

  66. Seiden LS, Sabol KE, Ricaurte GA (1993) Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33:639–677

    Article  CAS  PubMed  Google Scholar 

  67. Zheng W, Zeng Z, Bhardwaj SK, Jamali S, Srivastava LK (2013) Lithium normalizes amphetamine-induced changes in striatal FoxO1 phosphorylation and behaviors in rats. Neuroreport 24:560–565

    Article  CAS  PubMed  Google Scholar 

  68. Barr AM, Fiorino DF, Phillips AG (1999) Effects of withdrawal from an escalating dose schedule of d-amphetamine on sexual behavior in the male rat. Pharmacol Biochem Behav 64:597–604

    Article  CAS  PubMed  Google Scholar 

  69. Barr AM, Phillips AG (2002) Increased successive negative contrast in rats withdrawn from an escalating-dose schedule of D-amphetamine. Pharmacol Biochem Behav 71:293–299

    Article  CAS  PubMed  Google Scholar 

  70. Markou A, Koob GF (1991) Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology 4:17–26

    CAS  PubMed  Google Scholar 

  71. Marszalek-Grabska M, Gibula-Bruzda E, Jenda M, Gawel K, Kotlinska JH (2016) Memantine improves memory impairment and depressive-like behavior induced by amphetamine withdrawal in rats. Brain Res 1642:389–396

    Article  CAS  PubMed  Google Scholar 

  72. Mutschler NH, Miczek KA (1998) Withdrawal from a self-administered or non-contingent cocaine binge: differences in ultrasonic distress vocalizations in rats. Psychopharmacology 136:402–408

    Article  CAS  PubMed  Google Scholar 

  73. Paulson PE, Camp DM, Robinson TE (1991) Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology 103:480–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schindler CW, Persico AM, Uhl GR, Goldberg SR (1994) Behavioral assessment of high-dose amphetamine withdrawal: importance of training and testing conditions. Pharmacol Biochem Behav 49:41–46

    Article  CAS  PubMed  Google Scholar 

  75. Schwartz JM, Ksir C, Koob GF, Bloom FE (1982) Changes in locomotor response to beta-endorphin microinfusion during and after opiate abstinence syndrome—a proposal for a model of the onset of mania. Psychiatry Res 7:153–161

    Article  CAS  PubMed  Google Scholar 

  76. Wise RA, Munn E (1995) Withdrawal from chronic amphetamine elevates baseline intracranial self-stimulation thresholds. Psychopharmacology 117:130–136

    Article  CAS  PubMed  Google Scholar 

  77. Pathak G, Ibrahim BA, McCarthy SA, Baker K, Kelly MP (2015) Amphetamine sensitization in mice is sufficient to produce both manic- and depressive-related behaviors as well as changes in the functional connectivity of corticolimbic structures. Neuropharmacology 95:434–447

    Article  CAS  PubMed  Google Scholar 

  78. van Enkhuizen J, Milienne-Petiot M, Geyer MA, Young JW (2015) Modeling bipolar disorder in mice by increasing acetylcholine or dopamine: chronic lithium treats most, but not all features. Psychopharmacology 232:3455–3467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Queiroz AIG, de Araújo MM, da Silva Araújo T, de Souza GC, Cavalcante LM, de Jesus Souza Machado M, de Lucena DF, Quevedo J, Macêdo D (2015) GBR 12909 administration as an animal model of bipolar mania: time course of behavioral, brain oxidative alterations and effect of mood stabilizing drugs. Metab Brain Dis 30:1207–1215

    Article  CAS  PubMed  Google Scholar 

  80. Fatima M, Srivastav S, Mondal AC (2017) Prenatal stress and depression associated neuronal development in neonates. Int J Dev Neurosci 60:1–7

    Article  PubMed  Google Scholar 

  81. Freund N, Thompson BS, Denormandie J, Vaccarro K, Andersen SL (2013) Windows of vulnerability: maternal separation, age, and fluoxetine on adolescent depressive-like behavior in rats. Neuroscience 249:88–97

    Article  CAS  PubMed  Google Scholar 

  82. Leussis MP, Freund N, Brenhouse HC, Thompson BS, Andersen SL (2012) Depressive-like behavior in adolescents after maternal separation: sex differences, controllability, and GABA. Dev Neurosci 34:210–217

    Article  CAS  PubMed  Google Scholar 

  83. Kikusui T, Mori Y (2009) Behavioural and neurochemical consequences of early weaning in rodents. J Neuroendocrinol 21:427–431

    Article  CAS  PubMed  Google Scholar 

  84. Macrì S, Laviola G, Leussis MP, Andersen SL (2010) Abnormal behavioral and neurotrophic development in the younger sibling receiving less maternal care in a communal nursing paradigm in rats. Psychoneuroendocrinology 35:392–402

    Article  PubMed  CAS  Google Scholar 

  85. Nishi M, Horii-Hayashi N, Sasagawa T (2014) Effects of early life adverse experiences on the brain: implications from maternal separation models in rodents. Front Neurosci 8:166

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lukkes JL, Watt MJ, Lowry CA, Forster GL (2009) Consequences of post-weaning social isolation on anxiety behavior and related neural circuits in rodents. Front Behav Neurosci. https://doi.org/10.3389/neuro.08.018.2009

  87. Deslauriers J, Toth M, Der-Avakian A, Risbrough VB (2017) Current status of animal models of posttraumatic stress disorder: behavioral and biological phenotypes, and future challenges in improving translation. Biol Psychiatry. https://doi.org/10.1016/j.biopsych.2017.11.019

    Article  PubMed  Google Scholar 

  88. Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    CAS  PubMed  Google Scholar 

  89. Yankelevitch-Yahav R, Franko M, Huly A, Doron R (2015) The forced swim test as a model of depressive-like behavior. J Vis Exp. https://doi.org/10.3791/52587

  90. Can A, Dao DT, Terrillion CE, Piantadosi SC, Bhat S, Gould TD (2012) The tail suspension test. J Vis Exp. https://doi.org/10.3791/3769

  91. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  CAS  PubMed  Google Scholar 

  92. Seligman MEP (1972) Learned helplessness. Annu Rev Med 23:407–412

    Article  CAS  PubMed  Google Scholar 

  93. Vollmayr B, Henn FA (2001) Learned helplessness in the rat: improvements in validity and reliability. Brain Res Brain Res Protoc 8:1–7

    Article  CAS  PubMed  Google Scholar 

  94. Durgam, R. C. (2001) Rodent models of depression: learned helplessness using a triadic design in rats. Curr Protoc Neurosci Chapter 8, Unit 8 10B

    Google Scholar 

  95. Hirschfeld RMA (2001) The comorbidity of major depression and anxiety disorders: recognition and management in primary care. Prim Care Companion J Clin Psychiatry 3:244–254

    Article  PubMed  PubMed Central  Google Scholar 

  96. Seibenhener ML, Wooten MC (2015) Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp. https://doi.org/10.3791/52434

  97. Belzung C (1992) Hippocampal mossy fibres: implication in novelty reactions or in anxiety behaviours? Behav Brain Res 51:149–155

    Article  CAS  PubMed  Google Scholar 

  98. Blasco-Serra A, González-Soler EM, Cervera-Ferri A, Teruel-Martí V, Valverde-Navarro AA (2017) A standardization of the Novelty-Suppressed Feeding Test protocol in rats. Neurosci Lett 658:73–78

    Article  CAS  PubMed  Google Scholar 

  99. Montgomery KC (1955) The relation between fear induced by novel stimulation and exploratory drive. J Comp Physiol Psychol 48:254–260

    Article  CAS  PubMed  Google Scholar 

  100. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  CAS  PubMed  Google Scholar 

  101. Carola V, D’Olimpio F, Brunamonti E, Mangia F, Renzi P (2002) Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav Brain Res 134:49–57

    Article  PubMed  Google Scholar 

  102. Njung’e K, Handley SL (1991) Evaluation of marble-burying behavior as a model of anxiety. Pharmacol Biochem Behav 38:63–67

    Article  PubMed  Google Scholar 

  103. Mitchell EN, Marston HM, Nutt DJ, Robinson ESJ (2012) Evaluation of an operant successive negative contrast task as a method to study affective state in rodents. Behav Brain Res 234:155–160

    Article  PubMed  Google Scholar 

  104. Harding EJ, Paul ES, Mendl M (2004) Animal behaviour: cognitive bias and affective state. Nature 427:312

    Article  CAS  PubMed  Google Scholar 

  105. Heshmati M, Russo SJ (2015) Anhedonia and the brain reward circuitry in depression. Curr Behav Neurosci Rep 2:146–153

    Article  PubMed  PubMed Central  Google Scholar 

  106. York JM, Blevins NA, McNeil LK, Freund GG (2013) Mouse short- and long-term locomotor activity analyzed by video tracking software. J Vis Exp. https://doi.org/10.3791/50252

  107. Young JW, Minassian A, Paulus MP, Geyer MA, Perry W (2007) A reverse-translational approach to bipolar disorder: rodent and human studies in the Behavioral Pattern Monitor. Neurosci Biobehav Rev 31:882–896

    Article  PubMed  PubMed Central  Google Scholar 

  108. Bastianini S, Berteotti C, Gabrielli A, Lo Martire V, Silvani A, Zoccoli G (2015) Recent developments in automatic scoring of rodent sleep. Arch Ital Biol 153:58–66

    PubMed  Google Scholar 

  109. Swann AC (2009) Impulsivity in mania. Curr Psychiatry Rep 11:481

    Article  PubMed  Google Scholar 

  110. Mar, A. C., and Robbins, T. W. (2007) Delay discounting and impulsive choice in the rat. Curr Protoc Neurosci Chapter 8, Unit 8 22

    Google Scholar 

  111. Mitchell SH (2014) Assessing delay discounting in mice. Curr Protoc Neurosci 66:8.30.1–8.30.12

    Article  Google Scholar 

  112. de Visser L, Homberg JR, Mitsogiannis M, Zeeb FD, Rivalan M, Fitoussi A, Galhardo V, van den Bos R, Winstanley CA, Dellu-Hagedorn F (2011) Rodent versions of the Iowa gambling task: opportunities and challenges for the understanding of decision-making. Front Neurosci. https://doi.org/10.3389/fnins.2011.00109

  113. Ågmo A (1997) Male rat sexual behavior. Brain Res Protocol 1:203–209

    Article  Google Scholar 

  114. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93:358–364

    Article  CAS  PubMed  Google Scholar 

  115. Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rico JL, Penagos-Gil M, Castañeda AF, Corredor K (2016) Gerbils exhibit stable open-arms exploration across repeated testing on the elevated plus-maze. Behav Process 122:104–109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadja Freund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Freund, N., Juckel, G. (2019). Bipolar Disorder: Its Etiology and How to Model in Rodents. In: Kobeissy, F. (eds) Psychiatric Disorders. Methods in Molecular Biology, vol 2011. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9554-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9554-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9553-0

  • Online ISBN: 978-1-4939-9554-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics