Skip to main content

Chromatin Immunoprecipitation Techniques in Neuropsychiatric Research

  • Protocol
  • First Online:
Book cover Psychiatric Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2011))

Abstract

Neuropsychiatric disorders are highly prevalent (e.g., affecting children 2–8 years old at a rate of 14%). Many of these disorders are highly heritable such as major depressive disorder and schizophrenia. Despite this, genome-wide association has failed to identify gene(s) significantly associated with diagnostic status suggesting a strong role for environmental factors and the epigenome. From a molecular standpoint, the study of DNA-protein interactions yields fruitful information regarding the regulation of cellular processes above the level of the nucleotide sequence. Understanding chromatin dynamics may continue to explain individual variation to environmental perturbation and subsequent behavioral response. Chromatin immunoprecipitation (ChIP) techniques have allowed for probing of epigenetic effectors at specific regions of the genome. The following article reviews the current techniques and considerations when incorporation ChIP into neuropsychiatric models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CDC (2018) Data & statistics. Children’s mental health. NCBDDD, CDC, Atlanta, GA. https://www.cdc.gov/childrensmentalhealth/data.html. Accessed 15 Mar 2018.

    Google Scholar 

  2. Gejman P, Sanders A, Duan J (2010) The role of genetics in the etiology of Schizophrenia. Psychiatr Clin North Am 33:35–66

    Article  Google Scholar 

  3. Lohoff FW (2010) Overview of the genetics of major depressive disorder. Curr Psychiatry Rep 12:539–546

    Article  Google Scholar 

  4. Bartlett AA, Singh R, Hunter RG (2017) Anxiety and epigenetics. Adv Exp Med Biol 978:145–166

    Article  CAS  Google Scholar 

  5. Collins AL, Kim Y, Sklar P, International Schizophrenia Consortium, O’Donovan MC, Sullivan PF (2012) Hypothesis-driven candidate genes for schizophrenia compared to genome-wide association results. Psychol Med 42:607–616

    Article  CAS  Google Scholar 

  6. CONVERGE consortium (2015) Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523:588–591

    Article  Google Scholar 

  7. Need AC, Ge D, Weale ME, Maia J, Feng S, Heinzen EL, Shianna KV, Yoon W, Kasperaviciūte D, Gennarelli M, Strittmatter WJ, Bonvicini C, Rossi G, Jayathilake K, Cola PA, McEvoy JP, Keefe RSE, Fisher EMC, St Jean PL, Giegling I, Hartmann AM, Möller H-J, Ruppert A, Fraser G, Crombie C, Middleton LT, St Clair D, Roses AD, Muglia P, Francks C, Rujescu D, Meltzer HY, Goldstein DB (2009) A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet 5:e1000373

    Article  Google Scholar 

  8. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947

    Article  CAS  Google Scholar 

  9. LaPlant Q, Nestler EJ (2011) CRACKing the histone code: cocaine’s effects on chromatin structure and function. Horm Behav 59:321–330

    Article  CAS  Google Scholar 

  10. Maze I, Covington HE, Dietz DM, LaPlant Q, Renthal W, Russo SJ, Mechanic M, Mouzon E, Neve RL, Haggarty SJ, Ren Y, Sampath SC, Hurd YL, Greengard P, Tarakhovsky A, Schaefer A, Nestler EJ (2010) Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327:213–216

    Article  CAS  Google Scholar 

  11. Renthal W, Kumar A, Xiao G, Wilkinson M, Covington HE, Maze I, Sikder D, Robison AJ, LaPlant Q, Dietz DM, Russo SJ, Vialou V, Chakravarty S, Kodadek TJ, Stack A, Kabbaj M, Nestler EJ (2009) Genome wide analysis of chromatin regulation by cocaine reveals a novel role for sirtuins. Neuron 62:335–348

    Article  CAS  Google Scholar 

  12. Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD (2004) Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 279:40545–40559

    Article  CAS  Google Scholar 

  13. Lubin FD, Roth TL, Sweatt JD (2008) Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 28:10576–10586

    Article  CAS  Google Scholar 

  14. Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53:857–869

    Article  CAS  Google Scholar 

  15. Hunter RG, McCarthy KJ, Milne TA, Pfaff DW, McEwen BS (2009) Regulation of hippocampal H3 histone methylation by acute and chronic stress. Proc Natl Acad Sci U S A 106:20912–20917

    Article  CAS  Google Scholar 

  16. Hunter RG, Murakami G, Dewell S, Seligsohn M, Baker MER, Datson NA, McEwen BS, Pfaff DW (2012) Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc Natl Acad Sci U S A 109:17657–17662

    Article  CAS  Google Scholar 

  17. Polman JAE, Kloet D, Ronald E, Datson NA (2013) Two populations of glucocorticoid receptor-binding sites in the male rat hippocampal genome. Endocrinology 154:1832–1844

    Article  Google Scholar 

  18. Mifsud KR, Reul JMHM (2016) Acute stress enhances heterodimerization and binding of corticosteroid receptors at glucocorticoid target genes in the hippocampus. Proc Natl Acad Sci U S A 113:11336–11341

    Article  CAS  Google Scholar 

  19. Feng J, Liu T, Qin B, Zhang Y, Liu XS (2012) Identifying ChIP-seq enrichment using MACS. Nat Protoc 7:1728. https://doi.org/10.1038/nprot.2012.101

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  Google Scholar 

  21. Bartlett AA, Hunter RG (2018) Transposons, stress and the functions of the deep genome. Front Neuroendocrinol 49:170. https://doi.org/10.1016/j.yfrne.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  22. Egelhofer TA, Minoda A, Klugman S, Lee K, Kolasinska-Zwierz P, Alekseyenko AA, Cheung M-S, Day DS, Gadel S, Gorchakov AA, Gu T, Kharchenko PV, Kuan S, Latorre I, Linder-Basso D, Luu Y, Ngo Q, Perry M, Rechtsteiner A, Riddle NC, Schwartz YB, Shanower GA, Vielle A, Ahringer J, Elgin SCR, Kuroda MI, Pirrotta V, Ren B, Strome S, Park PJ, Karpen GH, Hawkins RD, Lieb JD (2011) An assessment of histone-modification antibody quality. Nat Struct Mol Biol 18:91–93

    Article  CAS  Google Scholar 

  23. Wardle FC, Tan H (2015) A ChIP on the shoulder? Chromatin immunoprecipitation and validation strategies for ChIP antibodies. F1000Res 4:235. https://doi.org/10.12688/f1000research.6719.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Polman JAE, Welten JE, Bosch DS, de Jonge RT, Balog J, van der Maarel SM, de Kloet ER, Datson NA (2012) A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells. BMC Neurosci 13:118

    Article  CAS  Google Scholar 

  25. Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3:11

    Article  Google Scholar 

  26. Gasper WC, Marinov GK, Pauli-Behn F, Scott MT, Newberry K, DeSalvo G, Ou S, Myers RM, Vielmetter J, Wold BJ (2014) Fully automated high-throughput chromatin immunoprecipitation for ChIP-seq: identifying ChIP-quality p300 monoclonal antibodies. Sci Rep 4:5152. https://doi.org/10.1038/srep05152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arora S, Ayyar BV, O’Kennedy R (2014) Affinity chromatography for antibody purification. In: Labrou NE (ed) Protein downstream processing: design, development and application of high and low-resolution methods, Methods in molecular biology. Humana Press, Totowa, NJ. https://www.researchgate.net/publication/261171028_Affinity_Chromatography_for_Antibody_Purification. Accessed 15 Mar 2018.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank both Brian B Griffiths and Amanda MK Madden for technical assistance as well as the University of Massachusetts Boston for startup funding (RGH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Hunter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bartlett, A.A., Hunter, R.G. (2019). Chromatin Immunoprecipitation Techniques in Neuropsychiatric Research. In: Kobeissy, F. (eds) Psychiatric Disorders. Methods in Molecular Biology, vol 2011. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9554-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9554-7_36

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9553-0

  • Online ISBN: 978-1-4939-9554-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics