Skip to main content

MeCP2 Dysfunction in Rett Syndrome and Neuropsychiatric Disorders

  • Protocol
  • First Online:
Psychiatric Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2011))

Abstract

Elucidating the functions of a particular gene is paramount to the understanding of how its dysfunction contributes to disease. This is especially important when the gene is implicated in multiple different disorders. One such gene is methyl-CpG-binding protein 2 (MECP2), which has been most prominently associated with the neurodevelopmental disorder Rett syndrome, as well as major neuropsychiatric disorders such as autism and schizophrenia. Being initially identified as a transcriptional regulator that modulates gene expression and subsequently also shown to be involved in other molecular events, dysfunction of the MeCP2 protein has the potential to affect many cellular processes. In this chapter, we will briefly review the functions of the MeCP2 protein and how its mutations are implicated in Rett syndrome and other neuropsychiatric disorders. We will further discuss about the mouse models that have been generated to specifically dissect the function of MeCP2 in different cell types and brain regions. It is envisioned that such thorough and targeted examination of MeCP2 functions can aid in enlightening the role that it plays in normal and dysfunctional physiological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilman SR, Chang J, Xu B, Bawa TS, Gogos JA, Karayiorgou M, Vitkup D (2012) Diverse types of genetic variation converge on functional gene networks involved in schizophrenia. Nat Neurosci 15(12):1723–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cross-Disorder Group of the Psychiatric Genomics Consortium (2013) Identification of risk loci with shared effects on five major psychiatric disorders - a genome-wide analysis. Lancet 381(9875):1371–1379

    Article  PubMed Central  CAS  Google Scholar 

  3. Heinzen EL, Neale BM, Traynelis SF, Allen AS, Goldstein DB (2015) The genetics of neuropsychiatric diseases: looking in and beyond the exome. Annu Rev Neurosci 38:47–68

    Article  CAS  PubMed  Google Scholar 

  4. Pollimanti R, Gelernter J (2017) Widespread signatures of positive selection in common risk alleles associated to autism spectrum disorder. PLoS Genet 13(2):e1006618

    Article  CAS  Google Scholar 

  5. Sullivan PF, Daly MJ, O’Donovan M (2012) Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 13(8):537–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lotan A, Fenckova M, Bralten J, Alttoa A, Dixson L, Williams RW, van der Voet M (2014) Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders. Front Neurosci 8:331

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cross-Disorder Group of the Psychiatric Genomics Consortium (2013) Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 45(9):984–994

    Article  PubMed Central  CAS  Google Scholar 

  8. Zhao H, Nyholt DR (2017) Gene-based analyses reveal novel genetic overlap and allelic heterogeneity across five major psychiatric disorders. Hum Genet 136(2):263–274

    Article  CAS  PubMed  Google Scholar 

  9. Faraone SV, Biederman J, Wozniak J (2012) Examining the comorbidity between attention deficit hyperactivity disorder and bipolar I disorder: a meta-analysis of family genetic studies. Am J Psychiatry 169:1256–1266

    Article  PubMed  Google Scholar 

  10. Hamilton JP, Chen MC, Waugh CE, Joormann J, Gotlib IH (2014) Distinctive and common neural underpinnings of major depression, social anxiety, and their comorbidity. Soc Cogn Affect Neurosci 10(4):552–560

    Article  PubMed  PubMed Central  Google Scholar 

  11. Joshi G, Faraone SV, Wozniak J, Tarko L, Fried R, Galdo M, Furtak SL, Biederman J (2014) Symptom profile of ADHD in youth with high-functioning autism spectrum disorder: a comparative study in psychiatrically referred populations. J Atten Disord 21(10):846–855

    Article  PubMed  PubMed Central  Google Scholar 

  12. Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156(2-3):234–358

    Article  CAS  Google Scholar 

  13. Spiegelhalder K, Regen W, Nanovska S, Baglioni C, Riemann D (2013) Comorbid sleep disorders in neuropsychiatric disorders across the life cycle. Curr Psychiatry Rep 15(6):364

    Article  PubMed  Google Scholar 

  14. Foussias G, Agid O, Fervaha G, Remington G (2014) Negative symptoms of schizophrenia: clinical features, relevance to real world functioning and specificity versus other CNS disorders. Eur Neuropsychopharmacol 24(5):693–709

    Article  CAS  PubMed  Google Scholar 

  15. Zhu X, Need AC, Petrovski S, Goldstein DB (2014) One gene, many neuropsychiatric disorders: lessons from Mendelian diseases. Nat Neurosci 17(6):773–781

    Article  CAS  PubMed  Google Scholar 

  16. Adkins NL, Georgel PT (2011) MeCP2: structure and function. Biochem Cell Biol 89(1):1–11

    Article  CAS  PubMed  Google Scholar 

  17. Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY (2002) Insight into Rett syndrome: MeCP2 levels display tissue and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 11:115–124

    Article  CAS  PubMed  Google Scholar 

  18. Mnatzakanian GN, Lohi H, Munteanu I, Alfred SE, Yamada T, MacLeod PJ, Jones JR, Scherer SW, Schanen NC, Friez MJ, Vincent JB, Minassian BA (2004) A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet 36(4):339–341

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nan X, Campoy FJ, Bird A (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88(4):471–481

    Article  CAS  PubMed  Google Scholar 

  21. Wakefield RI, Smith BO, Nan X, Free A, Soteriou A, Uhrin D, Bird AP, Barlow PN (1999) The solution structure of the domain from MeCP2 that binds to methylated DNA. J Mol Biol 291(5):1055–1065

    Article  CAS  PubMed  Google Scholar 

  22. Nan X, Bird A (2001) The biological functions of the methyl-CpG-binding protein MeCP2 and its implication in Rett syndrome. Brain Dev Suppl 1:S32–S37

    Article  Google Scholar 

  23. Meehan RR, Lewis JD, Bird AP (1992) Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res 20(19):5085–5092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ballestar E, Yusufzai TM, Wolffe AP (2000) Effects of Rett syndrome mutations of the methyl-CpG binding domain of the transcriptional repressor MeCP2 on selectivity for association with methylated DNA. Biochemistry 39(24):7100–7106

    Article  CAS  PubMed  Google Scholar 

  25. Mellén M, Ayata P, Dewell S, Kriaucionis S, Heintz N (2012) MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151(7):1417–1430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69(6):905–914

    Article  CAS  PubMed  Google Scholar 

  27. Hansen JC, Ghosh RP, Woodcock CL (2010) Binding of the Rett syndrome protein, MeCP2, to methylated and unmethylated DNA and chromatin. IUBMB Life 62(10):732–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao N, Ma D, Leong WY, Han J, VanDongen A, Chen T, Goh EL (2015) The methyl-CpG-binding domain (MBD) is crucial for MeCP2’s dysfunction-induced defects in adult newborn neurons. Front Cell Neurosci 9:158

    PubMed  PubMed Central  Google Scholar 

  29. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389

    Article  CAS  PubMed  Google Scholar 

  30. Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278(6):4035–4040

    Article  CAS  PubMed  Google Scholar 

  31. Georgel PT, Horowitz-Scherer RA, Adkins N, Woodcock CL, Wade PA, Hansen JC (2003) Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J Biol Chem 278(34):32181–32188

    Article  CAS  PubMed  Google Scholar 

  32. Yasui DH, Peddada S, Bieda MC, Vallero RO, Hogart A, Nagarajan RP, Thatcher KN, Farnham PJ, Lasalle JM (2007) Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci U S A 104(49):19416–19421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320(5880):1224–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zlatanova J (2005) MeCP2: the chromatin connection and beyond. Biochem Cell Biol 83(3):251–262

    Article  CAS  PubMed  Google Scholar 

  35. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–191

    Article  CAS  PubMed  Google Scholar 

  36. Klose RJ, Bird AP (2004) MeCP2 behaves as an elongated monomer that does not stably associate with the Sin3a chromatin remodeling complex. J Biol Chem 279(45):46490–46496

    Article  CAS  PubMed  Google Scholar 

  37. Buschdorf JP, Strätling WH (2004) A WW domain binding region in methyl-CpG-binding protein MeCP2: impact on Rett syndrome. J Mol Med 82(2):135–143

    Article  CAS  PubMed  Google Scholar 

  38. Young JI, Hong EP, Castle JC, Crespo-Barreto J, Bowman AB, Rose MF, Kang D, Richman R, Johnson JM, Berget S, Zoghbi HY (2005) Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci U S A 102(49):17551–17558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gabel HW, Kinde B, Stroud H, Gilbert CS, Harmin DA, Kastan NR, Hemberg M, Ebert DH, Greenberg ME (2015) Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature 522(7554):89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23(2):185–188

    Article  CAS  PubMed  Google Scholar 

  41. Amir RE, Van den Veyver IB, Schultz R, Malicki DM, Tran CQ, Dahle EJ, Philippi A, Timar L, Percy AK, Motil KJ, Lichtarge O, Smith EO, Glaze DG, Zoghbi HY (2000) Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Ann Neurol 47:670–679

    Article  CAS  PubMed  Google Scholar 

  42. Wan M, Lee SS, Zhang X, Houwink-Manville I, Song HR, Amir RE, Budden S, Naidu S, Pereira JL, Lo IF, Zoghbi HY, Schanen NC, Francke U (1999) Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet 65:1520–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bienvenu T, Carrie A, de Roux N, Vinet MC, Jonveaux P, Couvert P, Villard L, Arzimanoglou A, Beldjord C, Fontes M, Tardieu M, Chelly J (2000) MECP2 mutations account for most cases of typical forms of Rett syndrome. Hum Mol Genet 9:1377–1384

    Article  CAS  PubMed  Google Scholar 

  44. Huppke P, Laccone F, Kramer N, Engel W, Hanefeld F (2000) Rett syndrome: analysis of MECP2 and clinical characterization of 31 patients. Hum Mol Genet 9:1369–1375

    Article  CAS  PubMed  Google Scholar 

  45. Lee SS, Wan M, Francke U (2001) Spectrum of MECP2 mutations in Rett syndrome. Brain Dev 23(Suppl 1):S138–S143

    PubMed  Google Scholar 

  46. Trappe R, Laccone F, Cobilanschi J, Meins M, Huppke P, Hanefeld F, Engel W (2001) MECP2 mutations in sporadic cases of Rett syndrome are almost exclusively of paternal origin. Am J Hum Genet 68(5):1093–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hagberg B, Aicardi J, Dias K, Ramos O (1983) A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol 14:471–479

    Article  CAS  PubMed  Google Scholar 

  48. Hagberg B, Goutieres F, Hanefeld F, Rett A, Wilson J (1985) Rett syndrome: criteria for inclusion and exclusion. Brain Dev 7:372–373

    Article  CAS  PubMed  Google Scholar 

  49. Kerr AM, Stephenson JB (1985) Rett’s syndrome in the west of Scotland. Br Med J (Clin Res Ed) 291:579–582

    Article  CAS  Google Scholar 

  50. Villard L, Kpebe A, Cardoso C, Chelly PJ, Tardieu PM, Fontes M (2000) Two affected boys in a Rett syndrome family: clinical and molecular findings. Neurology 55(8):1188–1193

    Article  CAS  PubMed  Google Scholar 

  51. Zeev BB, Yaron Y, Schanen NC, Wolf H, Brandt N, Ginot N, Shomrat R, Orr-Urtreger A (2002) Rett syndrome: clinical manifestations in males with MECP2 mutations. J Child Neurol 17(1):20–24

    Article  PubMed  Google Scholar 

  52. Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56:422–437

    Article  CAS  PubMed  Google Scholar 

  53. Nomura Y (2005) Early behaviour characteristics and sleep disturbance in Rett syndrome. Brain Dev 27(Suppl 1):S35–S42

    Article  PubMed  Google Scholar 

  54. Hagberg B (2002) Clinical manifestations and stages of Rett syndrome. Ment Retard Dev Disabil Res Rev 8(2):61–65

    Article  PubMed  Google Scholar 

  55. Hagberg B (2005) Rett syndrome: long-term clinical follow-up experiences over four decades. J Child Neurol 20:722–727

    Article  PubMed  Google Scholar 

  56. Roze E, Cochen V, Sangla S, Bienvenu T, Roubergue A, Leu-Semenescu S, Vidaihet M (2007) Rett syndrome: an overlooked diagnosis in women with stereotypic hand movements, psychomotor retardation, Parkinsonism, and dystonia? Mov Disord 22:387–389

    Article  PubMed  Google Scholar 

  57. Armstrong DD (2005) Neuropathology of Rett syndrome. J Child Neurol 20:747–753

    Article  PubMed  Google Scholar 

  58. Casanova MF, Buxhoeveden D, Switala A, Roy E (2003) Rett syndrome as a minicolumnopathy. Clin Neuropathol 22:163–168

    CAS  PubMed  Google Scholar 

  59. Bauman ML, Kemper TL, Arin DM (1995) Pervasive neuroanatomic abnormalities of the brain in three cases of Rett’s syndrome. Neurology 45:1581–1586

    Article  CAS  PubMed  Google Scholar 

  60. Zappella M, Meloni I, Longo I, Hayek G, Renieri A (2001) Preserved speech variants of the Rett syndrome: molecular and clinical analysis. Am J Med Genet 104:14–22

    Article  CAS  PubMed  Google Scholar 

  61. Amir RE, Fang P, Yu Z, Glaze DG, Percy AK, Zoghbi HY, Roa BB, Van den Veyver IB (2005) Mutations in exon 1 of MECP2 are a rare cause of Rett syndrome. J Med Genet 42:e15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Quenard A, Yilmaz S, Fontaine H, Bienvenu T, Moncla A, des Portes V, Rivier F, Mathieu M, Raux G, Jonveaux P, Riviere F, Mathieuf M, Rauxg G, Jonveauxa P, Philippe C (2006) Deleterious mutations in exon 1 of MECP2 in Rett syndrome. Eur J Med Genet 49:313–322

    Article  PubMed  Google Scholar 

  63. Saunders CJ, Minassian BE, Chow EW, Zhao W, Vincent JB (2009) Novel exon 1 mutations in MECP2 implicate isoform MeCP2_e1 in classical Rett syndrome. Am J Med Genet A 149A:1019–1023

    Article  CAS  PubMed  Google Scholar 

  64. Smeets E, Terhal P, Casaer P, Peters A, Midro A, Schollen E, van Roozendaal K, Moog U, Matthijs G, Herbergs J, Smeets H, Curfs L, Schrander-Stumpel C, Fryns JP (2005) Rett syndrome in females with CTS hot spot deletions: a disorder profile. Am J Med Genet A 132A(2):117–120

    Article  CAS  PubMed  Google Scholar 

  65. de Leon-Guerrero SD, Pedraza-Alva G, Perez-Martinez L (2011) In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system. Eur J Neurosci 33:1563–1574

    Article  Google Scholar 

  66. Tudor M, Akbarian S, Chen RZ, Jaenisch R (2002) Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc Natl Acad Sci U S A 99(24):15536–15541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jordan C, Li HH, Kwan HC, Francke U (2007) Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets. BMC Med Genet 8:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ben-Shachar S, Chahrour M, Thaller C, Shaw CA, Zoghbi HY (2009) Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum Mol Genet 18(13):2431–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao YT, Goffin D, Johnson BS, Zhou Z (2013) Loss of MeCP2 function is associated with distinct gene expression changes in the striatum. Neurobiol Dis 59:257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Johnson BS, Zhao YT, Fasolino M, Lamonica JM, Kim YJ, Georgakilas G, Wood KH, Bu D, Cui Y, Goffin D, Vahedi G, Kim TH, Zhou Z (2017) Biotin tagging of MeCP2 in mice reveals contextual insights into the Rett syndrome transcriptome. Nat Med 23(10):1203–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hoffbuhr KC, Moses LM, Jerdonek MA, Naidu S, Hoffman EP (2002) Associations between MeCP2 mutations, X-chromosome inactivation, and phenotype. Ment Retard Dev Disabil Res Rev 8(2):99–105

    Article  CAS  PubMed  Google Scholar 

  72. Dragich J, Houwink-Manville I, Schanen C (2000) Rett syndrome: a surprising result of mutation in MECP2. Hum Mol Genet 9(16):2365–2375

    Article  CAS  PubMed  Google Scholar 

  73. Huppke P, Held M, Laccone F, Hanefeld F (2003) The spectrum of phenotypes in females with Rett Syndrome. Brain Dev 25(5):346–351

    Article  PubMed  Google Scholar 

  74. Young JI, Zoghbi HY (2004) X-chromosome inactivation patterns are unbalanced and affect the phenotypic outcome in a mouse model of Rett syndrome. Am J Hum Genet 74(3):511–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. APA, Washington, DC

    Book  Google Scholar 

  76. Gandal MJ, Edgar JC, Ehrlichman RS, Mehta M, Roberts TP, Siegel SJ (2010) Validating γ oscillations and delayed auditory responses as translational biomarkers of autism. Biol Psychiatry 68(12):1100–1106

    Article  PubMed  PubMed Central  Google Scholar 

  77. Roberts TP, Khan SY, Rey M, Monroe JF, Cannon K, Blaskey L, Woldoff S, Qasmieh S, Gandal M, Schmidt GL, Zarnow DM, Levy SE, Edgar JC (2010) MEG detection of delayed auditory evoked responses in autism spectrum disorders: towards an imaging biomarker for autism. Autism Res 3(1):8–18

    PubMed  PubMed Central  Google Scholar 

  78. Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11(2):100–113

    Article  CAS  PubMed  Google Scholar 

  79. Gandal MJ, Edgar JC, Klook K, Siegel SJ (2012) Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology 62(3):1504–1518

    Article  CAS  PubMed  Google Scholar 

  80. Wulffaert J, Van Berckelaer-Onnes IA, Scholte EM (2009) Autistic disorder symptoms in Rett syndrome. Autism 13(6):567–581

    Article  PubMed  Google Scholar 

  81. Neul JL (2012) The relationship of Rett syndrome and MECP2 disorders to autism. Dialogues Clin Neurosci 14(3):253–262

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lam CW, Yeung WL, Ko CH, Poon PM, Tong SF, Chan KY, Lo IF, Chan LY, Hui J, Wong V, Pang CP, Lo YM, Fok TF (2000) Spectrum of mutations in the MECP2 gene in patients with infantile autism and Rett syndrome. J Med Genet 37(12):E41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carney RM, Wolpert CM, Ravan SA, Shahbazian M, Ashley-Koch A, Cuccaro ML, Vance JM, Pericak-Vance MA (2003) Identification of MeCP2 mutations in a series of females with autistic disorder. Pediatr Neurol 28(3):205–211

    Article  PubMed  Google Scholar 

  84. Li H, Yamagata T, Mori M, Yasuhara A, Momoi MY (2005) Mutation analysis of methyl-CpG binding protein family genes in autistic patients. Brain Dev 27(5):321–325

    Article  CAS  PubMed  Google Scholar 

  85. Campos M Jr, Pestana CP, dos Santos AV, Ponchel F, Churchman S, Abdalla-Carvalho CB, dos Santos JM, dos Santos FL, Gikovate CG, Santos-Rebouças CB, Pimentel MM (2011) A MECP2 missense mutation within the MBD domain in a Brazilian male with autistic disorder. Brain Dev 33(10):807–809

    Article  PubMed  Google Scholar 

  86. Wen Z, Cheng TL, Li GZ, Sun SB, Yu SY, Zhang Y, Du YS, Qiu Z (2017) Identification of autism-related MECP2 mutations by whole-exome sequencing and functional validation. Mol Autism 8:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Shibayama A, Cook EH Jr, Feng J, Glanzmann C, Yan J, Craddock N, Jones IR, Goldman D, Heston LL, Sommer SS (2004) MECP2 structural and 3′-UTR variants in schizophrenia, autism and other psychiatric diseases: a possible association with autism. Am J Med Genet B Neuropsychiatr Genet 128B(1):50–53

    Article  PubMed  Google Scholar 

  88. Coutinho AM, Oliveira G, Katz C, Feng J, Yan J, Yang C, Marques C, Ataíde A, Miguel TS, Borges L, Almeida J, Correia C, Currais A, Bento C, Mota-Vieira L, Temudo T, Santos M, Maciel P, Sommer SS, Vicente AM (2007) MECP2 coding sequence and 3′UTR variation in 172 unrelated autistic patients. Am J Med Genet B Neuropsychiatr Genet 144B(4):475–483

    Article  CAS  PubMed  Google Scholar 

  89. Orrico A, Lam C, Galli L, Dotti MT, Hayek G, Tong SF, Poon PM, Zappella M, Federico A, Sorrentino V (2000) MECP2 mutation in male patients with non-specific X-linked mental retardation. FEBS Lett 481(3):285–288

    Article  CAS  PubMed  Google Scholar 

  90. Couvert P, Bienvenu T, Aquaviva C, Poirier K, Moraine C, Gendrot C, Verloes A, Andrès C, Le Fevre AC, Souville I, Steffann J, des Portes V, Ropers HH, Yntema HG, Fryns JP, Briault S, Chelly J, Cherif B (2001) MECP2 is highly mutated in X-linked mental retardation. Hum Mol Genet 10(9):941–946

    Article  CAS  PubMed  Google Scholar 

  91. Klauck SM, Lindsay S, Beyer KS, Splitt M, Burn J, Poustka A (2002) A mutation hot spot for nonspecific X-linked mental retardation in the MECP2 gene causes the PPM-X syndrome. Am J Hum Genet 70(4):1034–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yntema HG, Oudakker AR, Kleefstra T, Hamel BCJ, van Bokhoven H, Chelly J, Kalscheuer VM, Fryns J-P, Raynaud M, Moizard M-P, Moraine C (2002) In-frame deletion in MECP2 causes mild nonspecific mental retardation. Am J Med Genet 107:81–83

    Article  PubMed  Google Scholar 

  93. Moog U, Van Roozendaal K, Smeets E, Tserpelis D, Devriendt K, Buggenhout GV, Frijns JP, Schrander-Stumpel C (2006) MECP2 mutations are an infrequent cause of mental retardation associated with neurological problems in male patients. Brain Dev 28(5):305–310

    Article  PubMed  Google Scholar 

  94. Meloni I, Bruttini M, Longo I, Mari F, Rizzolio F, D’Adamo P, Denvriendt K, Fryns JP, Toniolo D, Renieri A (2000) A mutation in the Rett syndrome gene, MECP2, causes X-linked mental retardation and progressive spasticity in males. Am J Hum Genet 67(4):982–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cohen D, Lazar G, Couvert P, Desportes V, Lippe D, Mazet P, Héron D (2002) MECP2 mutation in a boy with language disorder and schizophrenia. Am J Psychiatry 159(1):148–149

    Article  PubMed  Google Scholar 

  96. Adegbola AA, Gonzales ML, Chess A, LaSalle JM, Cox GF (2009) A novel hypomorphic MECP2 point mutation is associated with a neuropsychiatric phenotype. Hum Genet 124(6):615–623

    Article  PubMed  Google Scholar 

  97. Suter B, Treadwell-Deering D, Zoghbi HY, Glaze DG, Neul JL (2014) Brief report: MECP2 mutations in people without Rett syndrome. J Autism Dev Disord 44(3):703–711

    Article  PubMed  PubMed Central  Google Scholar 

  98. Cukier HN, Perez AM, Collins AL, Zhou Z, Zoghbi HY, Botas J (2008) Genetic modifiers of MeCP2 function in Drosophila. PLoS Genet 4(9):e1000179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Pietri T, Roman AC, Guyon N, Romano SA, Washbourne P, Moens CB, de Polavieja GG, Sumbre G (2013) The first mecp2-null zebrafish model shows altered motor behaviors. Front Neural Circ 7:118

    Google Scholar 

  100. Leong WY, Lim ZH, Korzh V, Pietri T, Goh EL (2015) Methyl-CpG binding protein 2 (Mecp2) regulates sensory function through Sema5b and Robo2. Front Cell Neurosci 9:481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Chen Y, Yu J, Niu Y, Qin D, Liu H, Li G, Hu Y, Wang J, Lu Y, Kang Y, Jiang Y, Wu K, Li S, Wei J, He J, Wang J, Liu X, Luo Y, Si C, Bai R, Zhang K, Liu J, Huang S, Chen Z, Wang S, Chen X, Bao X, Zhang Q, Li F, Geng R, Liang A, Shen D, Jiang T, Hu X, Ma Y, Ji W, Sun YE (2017) Modeling Rett syndrome using TALEN-edited MECP2 mutant cynomolgus monkeys. Cell 169(5):945–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tate P, Skarnes W, Bird A (1996) The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse. Nat Genet 12:205–208

    Article  CAS  PubMed  Google Scholar 

  103. Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27(3):327–331

    Article  CAS  PubMed  Google Scholar 

  104. Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27(3):322–326

    Article  CAS  PubMed  Google Scholar 

  105. Pelka GJ, Watson CM, Radziewic T, Hayward M, Lahooti H, Christodoulou J, Tam PP (2006) Mecp2 deficiency is associated with learning and cognitive deficits and altered gene activity in the hippocampal region of mice. Brain 129(Pt 4):887–898

    Article  PubMed  Google Scholar 

  106. Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Luikenhuis S, Giacometti E, Beard CF, Jaenisch R (2004) Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc Natl Acad Sci U S A 101(16):6033–6038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gemelli T, Berton O, Nelson ED, Perrotti LI, Jaenisch R, Monteggia LM (2006) Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry 59(5):468–476

    Article  CAS  PubMed  Google Scholar 

  109. Chin EW, Lim WM, Ma D, Rosales FJ, Goh EL (2018) Choline rescues behavioural deficits in a mouse model of Rett syndrome by modulating neuronal plasticity. Mol Neurol. https://doi.org/10.1007/s12035-018-1345-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Fyffe SL, Neul JL, Samaco RC, Chao HT, Ben-Shachar S, Moretti P, McGill BE, Goulding EH, Sullivan E, Tecott LH, Zoghbi HY (2008) Deletion of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron 59(6):947–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Motil KJ, Schultz RJ, Abrams S, Ellis KJ, Glaze DG (2006) Fractional calcium absorption is increased in girls with Rett syndrome. J Pediatr Gastroenterol Nutr 42(4):419–426

    Article  PubMed  Google Scholar 

  112. Perello M, Chuang JC, Scott MM, Lutter M (2010) Translational neuroscience approaches to hyperphagia. J Neurosci 30(35):11549–11554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lucki I (1998) The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44:151–162

    Article  CAS  PubMed  Google Scholar 

  114. Gordon JA, Hen R (2004) The serotonergic system and anxiety. Neuromolecular Med 5:27–40

    Article  CAS  PubMed  Google Scholar 

  115. Popova NK (2008) From gene to aggressive behavior: the role of brain serotonin. Neurosci Behav Physiol 38:471–475

    Article  CAS  PubMed  Google Scholar 

  116. Samaco RC, Mandel-Brehm C, Chao HT, Ward CS, Fyffe-Maricich SL, Ren J, Hyland K, Thaller C, Maricich SM, Humphreys P, Greer JJ, Percy A, Glaze DG, Zoghbi HY, Neul JL (2009) Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proc Natl Acad Sci U S A 106(51):21966–21971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, Armstrong D, Paylor R, Zoghbi H (2002) Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35(2):243–254

    Article  CAS  PubMed  Google Scholar 

  118. Bienvenu T, Chelly J (2006) Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nat Rev Genet 7(6):415–426

    Article  CAS  PubMed  Google Scholar 

  119. Colvin L, Leonard H, de Klerk N, Davis M, Weaving L, Williamson S, Christodoulou J (2004) Refining the phenotype of common mutations in Rett syndrome. J Med Genet 41(1):25–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Neul JL, Fang P, Barrish J, Lane J, Caeg EB, Smith EO, Zoghbi H, Percy A, Glaze DG (2008) Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology 70(16):1313–1321

    Article  CAS  PubMed  Google Scholar 

  121. Lawson-Yuen A, Liu D, Han L, Jiang ZI, Tsai GE, Basu AC, Picker J, Feng J, Coyle JT (2007) Ube3a mRNA and protein expression are not decreased in Mecp2R168X mutant mice. Brain Res 1180:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schaevitz LR, Gómez NB, Zhen DP, Berger-Sweeney JE (2013) MeCP2 R168X male and female mutant mice exhibit Rett-like behavioral deficits. Genes Brain Behav 12(7):732–740

    CAS  PubMed  Google Scholar 

  123. Wegener E, Brendel C, Fischer A, Hülsmann S, Gärtner J, Huppke P (2014) Characterization of the MeCP2R168X knockin mouse model for Rett syndrome. PLoS One 9(12):e115444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Pitcher MR, Herrera JA, Buffington SA, Kochukov MY, Merritt JK, Fisher AR, Schanen NC, Costa-Mattioli M, Neul JL (2015) Rett syndrome like phenotypes in the R255X Mecp2 mutant mouse are rescued by MECP2 transgene. Hum Mol Genet 24(9):2662–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Baker SA, Chen L, Wilkins AD, Yu P, Lichtarge O, Zoghbi HY (2013) An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders. Cell 152(5):984–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jentarra GM, Olfers SL, Rice SG, Srivastava N, Homanics GE, Blue M, Naidu S, Narayanan V (2010) Abnormalities of cell packing density and dendritic complexity in the MeCP2 A140V mouse model of Rett syndrome/X-linked mental retardation. BMC Neurosci 11:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Schaevitz LR, Moriuchi JM, Nag N, Mellot TJ, Berger-Sweeney J (2010) Cognitive and social functions and growth factors in a mouse model of Rett syndrome. Physiol Behav 100(3):255–263

    Article  CAS  PubMed  Google Scholar 

  128. Carrette LLG, Blum R, Ma W, Kelleher RJ 3rd, Lee JT (2018) Tsix-Mecp2 female mouse model for Rett syndrome reveals that low-level MECP2 expression extends life and improves neuromotor function. Proc Natl Acad Sci U S A 115(32):8185–8190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chao HT, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, Neul JL, Gong S, Lu HC, Heintz N, Ekker M, Rubenstein JL, Noebels JL, Rosenmund C, Zoghbi HY (2010) Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468(7321):263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Moretti P, Bouwknecht JA, Teague R, Paylor R, Zoghbi HY (2005) Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome. Hum Mol Genet 14(2):205–220

    Article  CAS  PubMed  Google Scholar 

  131. Moretti P, Levenson JM, Battaglia F, Atkinson R, Teague R, Antalffy B, Armstrong D, Arancio O, Sweatt JD, Zoghbi HY (2006) Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci 26(1):319–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. McGill BE, Bundle SF, Yaylaoglu MB, Carson JP, Thaller C, Zoghbi HY (2006) Enhanced anxiety and stress-induced corticosterone release are associated with increased Crh expression in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 103(48):18267–18272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Goffin D, Allen M, Zhang L, Amorim M, Wang IT, Reyes AR, Mercado-Berton A, Ong C, Cohen S, Hu L, Blendy JA, Carlson GC, Siegel SJ, Greenberg ME, Zhou Z (2011) Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses. Nat Neurosci 15(2):274–283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Lyst MJ, Ekiert R, Ebert DH, Merusi C, Nowak J, Selfridge J, Guy J, Kastan NR, Robinson ND, de Lima Alves F, Rappsilber J, Greenberg ME, Bird A (2013) Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci 16(7):898–902

    Article  CAS  PubMed  Google Scholar 

  135. Ebert DH, Gabel HW, Robinson ND, Kastan NR, Hu LS, Cohen S, Navarro AJ, Lyst MJ, Ekiert R, Bird AP, Greenberg ME (2013) Nature 499(7458):341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Motil KJ, Schultz RJ, Browning K, Trautwein L, Glaze DG (1999) Oropharyngeal dysfunction and gastroesophageal dysmotility are present in girls and women with Rett syndrome. J Pediatr Gastroenterol Nutr 29(1):31–37

    Article  CAS  PubMed  Google Scholar 

  137. Kleefstra T, Yntema HG, Oudakker AR, Romein T, Sistermans E, Nillessen W, van Bokhoven H, de Vries BB, Hamel BC (2002) De novo MECP2 frameshift mutation in a boy with moderate mental retardation, obesity and gynaecomastia. Clin Genet 61(5):359–362

    Article  CAS  PubMed  Google Scholar 

  138. Santos M, Silva-Fernandes A, Oliveira P, Sousa N, Maciel P (2007) Evidence for abnormal early development in a mouse model of Rett syndrome. Genes Brain Behav 6(3):277–286

    Article  CAS  PubMed  Google Scholar 

  139. Stearns NA, Schaevitz LR, Bowling H, Nag N, Berger UV, Berger-Sweeney J (2007) Behavioral and anatomical abnormalities in Mecp2 mutant mice: a model for Rett syndrome. Neuroscience 146(3):907–921

    Article  CAS  PubMed  Google Scholar 

  140. Karp NA, Mason J, Beaudet AL, Benjamini Y, Bower L, Braun RE, Brown SDM, Chesler EJ, Dickinson ME, Flenniken AM, Fuchs H, Angelis MH, Gao X, Guo S, Greenaway S, Heller R, Herault Y, Justice MJ, Kurbatova N, Lelliott CJ, Lloyd KCK, Mallon AM, Mank JE, Masuya H, McKerlie C, Meehan TF, Mott RF, Murray SA, Parkinson H, Ramirez-Solis R, Santos L, Seavitt JR, Smedley D, Sorg T, Speak AO, Steel KP, Svenson KL, International Mouse Phenotyping Consortium, Wakana S, West D, Wells S, Westerberg H, Yaacoby S, White JK (2017) Prevalence of sexual dimorphism in mammalian phenotypic traits. Nat Commun 8:15475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyleen L. K. Goh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chin, E.W.M., Goh, E.L.K. (2019). MeCP2 Dysfunction in Rett Syndrome and Neuropsychiatric Disorders. In: Kobeissy, F. (eds) Psychiatric Disorders. Methods in Molecular Biology, vol 2011. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9554-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9554-7_33

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9553-0

  • Online ISBN: 978-1-4939-9554-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics