Skip to main content

Y-Shaped Maze to Test Spontaneous Object Recognition and Temporal Order Memory After Traumatic Brain Injury

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2011))

Abstract

Traumatic brain injury (TBI) is one of the most frequent causes of brain damage. Cognitive deficits have been reported in the literature after mild-to-severe TBI affecting memory, language, executive functions, attention, and information processing speed. In this chapter, we describe a method to characterize cognitive impairment in rats following TBI of various intensities. The focus will be on spontaneous object recognition and temporal order memory in rats. These tests are performed in a Y-shaped maze. We have previously identified using this method persistent spontaneous object recognition and temporal order memory deficits following mild-to-moderate TBI in the animals up to 35-day postinjury.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lundin A, de Boussard C, Edman G, Borg J (2006) Symptoms and disability until 3 months after mild TBI. Brain Inj 20:799–806

    Article  CAS  Google Scholar 

  2. Smith DH, Soares HD, Pierce JS, Perlman KG, Saatman KE, Meaney DF, Dixon CE, McIntosh TK (1995) A model of parasagittal controlled cortical impact in the mouse: cognitive and histopathologic effects. J Neurotrauma 12:169–178

    Article  CAS  Google Scholar 

  3. Fox GB, Fan L, LeVasseur RA, Faden AI (1998) Effect of traumatic brain injury on mouse spatial and nonspatial learning in the Barnes circular maze. J Neurotrauma 15:1037–1046

    Article  CAS  Google Scholar 

  4. Fox GB, Fan L, Levasseur RA, Faden AI (1998) Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse. J Neurotrauma 15:599–614

    Article  CAS  Google Scholar 

  5. Dikmen S, McLean A, Temkin N (1986) Neuropsychological and psychosocial consequences of minor head injury. J Neurol Neurosurg Psychiatry 49:1227–1232

    Article  CAS  Google Scholar 

  6. Chuah YM, Maybery MT, Fox AM (2004) The long-term effects of mild head injury on short-term memory for visual form, spatial location, and their conjunction in well-functioning university students. Brain Cogn 56:304–312

    Article  Google Scholar 

  7. Swanson HL (1999) What develops in working memory? A life span perspective. Dev Psychol 35:986–1000

    Article  CAS  Google Scholar 

  8. Yonelinas AP, Kroll NE, Quamme JR, Lazzara MM, Sauve MJ, Widaman KF, Knight RT (2002) Effects of extensive temporal lobe damage or mild hypoxia on recollection and familiarity. Nat Neurosci 5:1236–1241

    Article  CAS  Google Scholar 

  9. Mishkin M, Suzuki WA, Gadian DG, Vargha-Khadem F (1997) Hierarchical organization of cognitive memory. Philos Trans R Soc Lond Ser B Biol Sci 352:1461–1467

    Article  CAS  Google Scholar 

  10. Skinner EI, Fernandes MA (2007) Neural correlates of recollection and familiarity: a review of neuroimaging and patient data. Neuropsychologia 45:2163–2179

    Article  Google Scholar 

  11. Bigler ED (2008) Neuropsychology and clinical neuroscience of persistent post-concussive syndrome. J Int Neuropsychol Soc 14:1–22

    Article  Google Scholar 

  12. Saunders JC, McDonald S, Richardson R (2006) Loss of emotional experience after traumatic brain injury: findings with the startle probe procedure. Neuropsychology 20:224–231

    Article  Google Scholar 

  13. Bigler ED (2007) Anterior and middle cranial fossa in traumatic brain injury: relevant neuroanatomy and neuropathology in the study of neuropsychological outcome. Neuropsychology 21:515–531

    Article  Google Scholar 

  14. Wais PE, Wixted JT, Hopkins RO, Squire LR (2006) The hippocampus supports both the recollection and the familiarity components of recognition memory. Neuron 49:459–466

    Article  CAS  Google Scholar 

  15. Yonelinas AP, Otten LJ, Shaw KN, Rugg MD (2005) Separating the brain regions involved in recollection and familiarity in recognition memory. J Neurosci 25:3002–3008

    Article  CAS  Google Scholar 

  16. Buffalo EA, Reber PJ, Squire LR (1998) The human perirhinal cortex and recognition memory. Hippocampus 8:330–339

    Article  CAS  Google Scholar 

  17. Barker GR, Bird F, Alexander V, Warburton EC (2007) Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci 27:2948–2957

    Article  CAS  Google Scholar 

  18. Langeluddecke PM, Lucas SK (2003) Quantitative measures of memory malingering on the Wechsler Memory Scale—third edition in mild head injury litigants. Arch Clin Neuropsychol 18:181–197

    PubMed  Google Scholar 

  19. Umile EM, Sandel ME, Alavi A, Terry CM, Plotkin RC (2002) Dynamic imaging in mild traumatic brain injury: support for the theory of medial temporal vulnerability. Arch Phys Med Rehabil 83:1506–1513

    Article  Google Scholar 

  20. Mitchell JB, Laiacona J (1998) The medial frontal cortex and temporal memory: tests using spontaneous exploratory behaviour in the rat. Behav Brain Res 97:107–113

    Article  CAS  Google Scholar 

  21. Blumenfeld RS, Ranganath C (2007) Prefrontal cortex and long-term memory encoding: an integrative review of findings from neuropsychology and neuroimaging. Neuroscientist 13:280–291

    Article  Google Scholar 

  22. Luo J, Nguyen A, Villeda S, Zhang H, Ding Z, Lindsey D, Bieri G, Castellano JM, Beaupre GS, Wyss-Coray T (2014) Long-term cognitive impairments and pathological alterations in a mouse model of repetitive mild traumatic brain injury. Front Neurol 5:12

    Article  Google Scholar 

  23. Heim LR, Bader M, Edut S, Rachmany L, Baratz-Goldstein R, Lin R, Elpaz A, Qubty D, Bikovski L, Rubovitch V, Schreiber S, Pick CG (2017) The invisibility of mild traumatic brain injury: impaired cognitive performance as a silent symptom. J Neurotrauma 34:2518–2528

    Article  Google Scholar 

  24. Darwish H, Mahmood A, Schallert T, Chopp M, Therrien B (2014) Simvastatin and environmental enrichment effect on recognition and temporal order memory after mild-to-moderate traumatic brain injury. Brain Inj 28:211–226

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hala Darwish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Darwish, H., Hasan, H. (2019). Y-Shaped Maze to Test Spontaneous Object Recognition and Temporal Order Memory After Traumatic Brain Injury. In: Kobeissy, F. (eds) Psychiatric Disorders. Methods in Molecular Biology, vol 2011. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9554-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9554-7_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9553-0

  • Online ISBN: 978-1-4939-9554-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics