Skip to main content

An Update on Artemisinin Resistance

  • Protocol
  • First Online:
Malaria Control and Elimination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2013))

Abstract

While the precise mode of action of artemisinin (ART) derivatives remains obscure, it is nonetheless commonly accepted that ART generates reactive oxygen intermediates that contribute to cell death. Also, numerous studies confirm that point mutations in the propeller domain of K13 protein play a key role in resistance to ART derivatives. Because of its homology with the KEAP1 protein, it is thought that this protein may have a role in the polyubiquitination of proteins and that its alteration may cause resistance of young parasite stages to the drug. In this chapter, we present our current knowledge of K13-related resistance to ART and its spread in Southeast Asia and discuss its possible emergence and/or diffusion in Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noedl H, Se Y, Schaecher K et al (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359:2619–2620

    Article  CAS  Google Scholar 

  2. Dondorp AM, Nosten F, Yi P et al (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:455–467

    Article  CAS  Google Scholar 

  3. Mita T, Tanabe K, Kita K (2009) Spread and evolution of Plasmodium falciparum drug resistance. Parasitol Int 58:201–209

    Article  CAS  Google Scholar 

  4. Ariey F, Witkowski B, Amaratunga C et al (2014) A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505:50–55

    Article  Google Scholar 

  5. Straimer J, Gnädig NF, Witkowski B et al (2015) Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347:428–431

    Article  CAS  Google Scholar 

  6. Mbengue A, Bhattacharjee S, Pandharkar T et al (2015) A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature 520:683–687

    Article  CAS  Google Scholar 

  7. Ménard D, Khim N, Beghain J et al (2016) A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med 374:2453–2464

    Article  Google Scholar 

  8. Antoine T, Fisher N, Amewu R et al (2014) Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential. J Antimicrob Chemother 69:1005–1016

    Article  CAS  Google Scholar 

  9. Hu W, Chen SS, Zhang JL et al (2014) Dihydroartemisinin induces autophagy by suppressing NF-κB activation. Cancer Lett 343:239–248

    Article  CAS  Google Scholar 

  10. Efferth T, Giaisi M, Merling A et al (2007) Artesunate induces ROS-mediated apoptosis in doxorubicin-resistant T leukemia cells. PLoS One 2:e693

    Article  Google Scholar 

  11. Kiefer CR, Snyder LM (2000) Oxidation and erythrocyte senescence. Curr Opin Hematol 7:113–116

    Article  CAS  Google Scholar 

  12. O’Neill PM, Gary HP (2004) A medicinal chemistry perspective on artemisinin and related endoperoxides. J Med Chem 47:2945–2964

    Article  Google Scholar 

  13. Kumura N, Furukawa H, Onyango AN et al (2009) Different behavior of artemisinin and tetraoxane in the oxidative degradation of phospholipid. Chem Phys Lipids 160:114–120

    Article  CAS  Google Scholar 

  14. Wang J, Zhang CJ, Chia WN et al (2015) Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun 6:10111

    Article  CAS  Google Scholar 

  15. Bridgford JL, Xie SC, Cobbold SA et al (2018) Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat Commun 9:3801

    Article  Google Scholar 

  16. Itoh K, Wakabayashi N, Katoh Y et al (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86

    Article  CAS  Google Scholar 

  17. Mok S, Ashley EA, Ferreira PE et al (2015) Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science 347:431–435

    Article  CAS  Google Scholar 

  18. Dogovski C, Xie SC, Burgio G et al (2015) Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance. PLoS Biol 13:e1002132

    Article  Google Scholar 

  19. Kyle DE, Webster HK (1996) Postantibiotic effect of quinine and dihydroartemisinin on Plasmodium falciparum in vitro: implications for a mechanism of recrudescence. In: XIVth International Congress for Tropical Medicine and Malaria

    Google Scholar 

  20. Teuscher F, Gatton ML, Chen N et al (2010) Artemisinin-induced dormancy in Plasmodium falciparum: duration, recovery rates, and implications in treatment failure. J Infect Dis 202:1362–1368

    Article  Google Scholar 

  21. Witkowski B, Lelièvre J, Barragán MJ et al (2010) Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother 54:1872–1877

    Article  CAS  Google Scholar 

  22. Witkowski B, Amaratunga C, Khim N et al (2013) Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis 13:1043–1049

    Article  CAS  Google Scholar 

  23. Witkowski B, Khim N, Chim P et al (2013) Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob Agents Chemother 57:914–923

    Article  CAS  Google Scholar 

  24. Mok S, Imwong M, Mackinnon MJ et al (2011) Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genomics 12:391

    Article  CAS  Google Scholar 

  25. Zhang M, Gallego-Delgado J, Fernandez-Arias C et al (2017) Inhibiting the Plasmodium eIF2a kinase PK4 prevents artemisinin-induced latency. Cell Host Microbe 22:766–776

    Article  CAS  Google Scholar 

  26. Wootton JC, Feng X, Ferdig MT et al (2002) Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418:320–323

    Article  CAS  Google Scholar 

  27. Imwong M, Suwannasin K, Kunasol C et al (2017) The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet Infect Dis 17:491–497

    Article  Google Scholar 

  28. Amato R, Pearson RD, Almagro-Garcia J et al (2018) Origins of the current outbreak of multidrug-resistant malaria in southeast Asia: a retrospective genetic study. Lancet Infect Dis 18:337–345

    Article  Google Scholar 

  29. Phyo AP, Ashley EA, Anderson TJC et al (2016) Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai-Myanmar border (2003-2013): the role of parasite genetic factors. Clin Infect Dis 63:784–791

    Article  CAS  Google Scholar 

  30. Witkowski B, Duru V, Khim N et al (2017) A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect Dis 17:174–183

    Article  CAS  Google Scholar 

  31. Ariey F, Fandeur T, Durand R et al (2006) Invasion of Africa by a single pfcrt allele of South East Asian type. Malar J 5:34

    Article  Google Scholar 

  32. Maïga O, Djimdé AA, Hubert V et al (2007) A shared Asian origin of the triple-mutant dhfr allele in Plasmodium falciparum from sites across Africa. J Infect Dis 196:165–172

    Article  Google Scholar 

  33. Vinayak S, Alam MT, Mixson-Hayden T et al (2010) Origin and evolution of sulfadoxine resistant Plasmodium falciparum. PLoS Pathog 6:e1000830

    Article  Google Scholar 

  34. Tatem AJ, Smith DL (2010) International population movements and regional Plasmodium falciparum malaria elimination strategies. Proc Natl Acad Sci U S A 107:12222–12227

    Article  CAS  Google Scholar 

  35. Ariey F, Robert V (2003) The puzzling links between malaria transmission and drug resistance. Trends Parasitol 19:158–160

    Article  Google Scholar 

  36. Scott N, Ataide R, Wilson DP et al (2018) Implications of population-level immunity for the emergence of artemisinin-resistant malaria: a mathematical model. Malar J 17:279

    Article  Google Scholar 

  37. Zani B, Gathu M, Donegan S et al (2014) Dihydroartemisinin-piperaquine for treating uncomplicated Plasmodium falciparum malaria. Cochrane Database Syst Rev (1):CD010927

    Google Scholar 

  38. Sutherland CJ, Lansdell P, Sanders M et al (2017) pfk13-independent treatment failure in four imported cases of Plasmodium falciparum malaria treated with artemether-lumefantrine in the United Kingdom. Antimicrob Agents Chemother 61. https://doi.org/10.1128/AAC.02382-16

  39. Ikeda M, Kaneko M, Tachibana SI et al (2018) Artemisinin-resistant Plasmodium falciparum with high survival rates, Uganda, 2014-2016. Emerg Infect Dis 24:718–726

    Article  CAS  Google Scholar 

  40. Lu F, Culleton R, Zhang M et al (2017) Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa. N Engl J Med 376:991–993

    Article  Google Scholar 

  41. Rocamora F, Zhu L, Liong KY et al (2018) Oxidative stress and protein damage responses mediate artemisinin resistance in malaria parasites. PLoS Pathog 14:e1006930

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Ariey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ariey, F., Ménard, D. (2019). An Update on Artemisinin Resistance. In: Ariey, F., Gay, F., Ménard, R. (eds) Malaria Control and Elimination. Methods in Molecular Biology, vol 2013. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9550-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9550-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9549-3

  • Online ISBN: 978-1-4939-9550-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics