Skip to main content

Lipoic Acid Ligase-Promoted Bioorthogonal Protein Modification and Immobilization

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2012))

Abstract

Protein bioconjugation benefits from precise regional and temporal control. One notable way of achieving this control is through the enzymatic attachment of bioorthogonal reactive handles to peptide recognition sequences that are genetically fused to target proteins of interest. The lipoic acid ligase variant, LplAW37V, functionalizes proteins by covalently attaching an azide-bearing lipoic acid derivative to a 13-amino acid recognition sequence known as the lipoic acid ligase acceptor peptide (LAP). Once attached, the azide group can be modified with diverse chemical entities through azide–alkyne click chemistry, enabling conjugation of chemical probes such as fluorophores and facilitating polymer attachment, glycosylation, and protein immobilization in addition to many other possible chemical modifications. The versatility of the attached azide group is complemented by the modular nature of the LAP sequence, which can be introduced within a protein at internal and/or terminal sites as well as at multiple sites simultaneously. In this chapter we describe the in vitro LplAW37V-mediated ligation of 10-azidodecanoic acid to a LAP-containing target protein (i.e., green fluorescent protein (GFP)) and the characterization of the ligation reaction products. Additionally, methods for the modification and immobilization of azide-functionalized LAP-GFP are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Uttamapinant C, White KA, Baruah H et al (2010) A fluorophore ligase for site-specific protein labeling inside living cells. Proc Natl Acad Sci U S A 107:10914–10919

    Article  CAS  Google Scholar 

  2. Stephanopoulos N, Francis MB (2011) Choosing an effective protein bioconjugation strategy. Nat Chem Biol 7:876–884

    Article  CAS  Google Scholar 

  3. Dierks T, Schmidt B, Borissenko LV et al (2003) Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell 113:435–444

    Article  CAS  Google Scholar 

  4. Mazmanian SK, Liu G, Ton-That H et al (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285:760–763

    Article  CAS  Google Scholar 

  5. Strop P (2014) Versatility of microbial transglutaminase. Bioconjug Chem 25:855–862

    Article  CAS  Google Scholar 

  6. Clancy KW, Melvin JA, McCafferty DG (2010) Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Biopolymers 94:385–396

    Article  CAS  Google Scholar 

  7. Rashidian M, Dozier JK, Distefano MD (2013) Enzymatic labeling of proteins: techniques and approaches. Bioconjug Chem 24:1277–1294

    Article  CAS  Google Scholar 

  8. Rush JS, Bertozzi CR (2008) New aldehyde tag sequences identified by screening formylglycine generating enzymes in vitro and in vivo. J Am Chem Soc 130:12240–12241

    Article  CAS  Google Scholar 

  9. Guimaraes CP, Witte MD, Theile CS et al (2013) Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat Protoc 8:1787–1799

    Article  Google Scholar 

  10. Uttamapinant C, Sanchez MI, Liu DS et al (2013) Site-specific protein labeling using PRIME and chelation-assisted click chemistry. Nat Protoc 8:1620–1634

    Article  Google Scholar 

  11. Fujiwara K, Maita N, Hosaka H et al (2010) Global conformational change associated with the two-step reaction catalyzed by Escherichia coli lipoate-protein ligase A. J Biol Chem 285:9971–9980

    Article  CAS  Google Scholar 

  12. Puthenveetil S, Liu DS, White KA et al (2009) Yeast display evolution of a kinetically efficient 13-amino acid substrate for lipoic acid ligase. J Am Chem Soc 131:16430–16438

    Article  CAS  Google Scholar 

  13. Grover N, Plaks JG, Summers SR et al (2016) Acylase-containing polyurethane coatings with anti-biofilm activity. Biotechnol Bioeng 113:2535–2543

    Article  CAS  Google Scholar 

  14. Plaks JG, Falatach R, Kastantin M et al (2015) Multisite clickable modification of proteins using lipoic acid ligase. Bioconjug Chem 26:1104–1112

    Article  CAS  Google Scholar 

  15. Faulón Marruecos D, Schwartz DK, Kaar JL (2018) Impact of surface interactions on protein conformation. Curr Opin Colloid Interface Sci 38:45–55

    Article  Google Scholar 

  16. Liu DS, Nivon LG, Richter F et al (2014) Computational design of a red fluorophore ligase for site-specific protein labeling in living cells. Proc Natl Acad Sci U S A 111:E4551–E4559

    Article  CAS  Google Scholar 

  17. Cohen JD, Zou P, Ting AY (2012) Site-specific protein modification using lipoic acid ligase and bis-aryl hydrazone formation. Chembiochem 13:888–894

    Article  CAS  Google Scholar 

  18. Yao JZ, Uttamapinant C, Poloukhtine A et al (2012) Fluorophore targeting to cellular proteins via enzyme-mediated azide ligation and strain-promoted cycloaddition. J Am Chem Soc 134:3720–3728

    Article  CAS  Google Scholar 

  19. Fernandez-Suarez M, Baruah H, Martinez-Hernandez L et al (2007) Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat Biotechnol 25:1483–1487

    Article  CAS  Google Scholar 

  20. Meldal M, Tornøe CW (2008) Cu-catalyzed azide–alkyne cycloaddition. Chem Rev 108:2952–3015

    Article  CAS  Google Scholar 

  21. Jewett JC, Bertozzi CR (2010) Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev 39:1272–1279

    Article  CAS  Google Scholar 

  22. Patterson DM, Nazarova LA, Prescher JA (2014) Finding the right (bioorthogonal) chemistry. ACS Chem Biol 9:592–605

    Article  CAS  Google Scholar 

  23. Blizzard RJ, Backus DR, Brown W et al (2015) Ideal bioorthogonal reactions using a site-specifically encoded tetrazine amino acid. J Am Chem Soc 137:10044–10047

    Article  CAS  Google Scholar 

  24. Row RD, Shih H-W, Alexander AT et al (2017) Cyclopropenones for metabolic targeting and sequential bioorthogonal labeling. J Am Chem Soc 139:7370–7375

    Article  CAS  Google Scholar 

  25. Pedelacq J-D, Cabantous S, Tran T et al (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88

    Article  CAS  Google Scholar 

  26. Hong V, Presolski SI, Ma C et al (2009) Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew Chem Int Ed Engl 48:9879–9883

    Article  CAS  Google Scholar 

  27. Lawrence MS, Phillips KJ, Liu DR (2007) Supercharging proteins can impart unusual resilience. J Am Chem Soc 129:10110–10112

    Article  CAS  Google Scholar 

  28. Chaparro Sosa AF, Kienle DF, Falatach RM et al (2018) Stabilization of immobilized enzymes via the chaperone-like activity of mixed lipid bilayers. ACS Appl Mater Interfaces 10:19504–19513

    Article  CAS  Google Scholar 

  29. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  30. Chado GR, Holland EN, Tice AK et al (2018) Modification of lipase with poly(4-acryloylmorpholine) enhances solubility and transesterification activity in anhydrous ionic liquids. Biomacromolecules 19:1324–1332

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natick Soldier Research, Development, and Engineering Center (NSRDEC) through a research grant (W911NF-12-01115) awarded by the Army Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel L. Kaar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Plaks, J.G., Kaar, J.L. (2019). Lipoic Acid Ligase-Promoted Bioorthogonal Protein Modification and Immobilization. In: Nuijens, T., Schmidt, M. (eds) Enzyme-Mediated Ligation Methods. Methods in Molecular Biology, vol 2012. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9546-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9546-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9545-5

  • Online ISBN: 978-1-4939-9546-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics