Skip to main content

Site-Specific Antibody Labeling Using Phosphopantetheinyl Transferase-Catalyzed Ligation

  • Protocol
  • First Online:
Enzyme-Mediated Ligation Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2012))

Abstract

4′-Phosphopantetheinyl transferases (PPTases) have been employed by researchers as versatile biocatalysts for the site-specific modification of numerous protein targets with structurally diverse molecules. Here we describe the use of these enzymes for the production of homogeneous antibody–drug conjugates (ADCs), which have garnered much attention as innovative anticancer drugs. The exceptionally broad substrate tolerance of PPTases allows for one-step and two-step conjugation strategies for site-specific ADC synthesis. While one-step conjugation involves direct coupling of a drug molecule to an antibody, two-step conjugation provides increased flexibility and efficiency of the conjugation process by first attaching a bioorthogonal chemical handle that is then used for drug molecule attachment in a second step. The aim of this chapter is to outline detailed protocols for both labeling procedures, as well as to provide guidance on enzyme and substrate preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prescher JA, Bertozzi CR (2005) Chemistry in living systems. Nat Chem Biol 1(1):13–21

    Article  Google Scholar 

  2. Hinner MJ, Johnsson K (2010) How to obtain labeled proteins and what to do with them. Curr Opin Biotechnol 21(6):766–776

    Article  Google Scholar 

  3. Foley TL, Burkart MD (2007) Site-specific protein modification: advances and applications. Curr Opin Chem Biol 11(1):12–19

    Article  Google Scholar 

  4. Lotze J, Reinhardt U, Seitz O, Beck-Sickinger AG (2016) Peptide-tags for site-specific protein labelling in vitro and in vivo. Mol Biosyst 12(6):1731–1745

    Article  Google Scholar 

  5. Pakhomov AA, Martynov VI (2008) GFP family: structural insights into spectral tuning. Chem Biol 15(8):755–764

    Article  Google Scholar 

  6. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  Google Scholar 

  7. Zhang G, Gurtu V, Kain SR (1996) An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res Commun 227(3):707–711

    Article  Google Scholar 

  8. Los GV et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3(6):373–382

    Article  Google Scholar 

  9. Sun X et al (2011) Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging. Chembiochem 12(14):2217–2226

    Article  Google Scholar 

  10. Gautier A et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136

    Article  Google Scholar 

  11. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    Article  Google Scholar 

  12. Junutula JR et al (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26(8):925–932

    Article  Google Scholar 

  13. Shen BQ et al (2012) Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 30(2):184–189

    Article  Google Scholar 

  14. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281(5374):269–272

    Article  Google Scholar 

  15. Halo TL, Appelbaum J, Hobert EM, Balkin DM, Schepartz A (2009) Selective recognition of protein tetraserine motifs with a cell-permeable, pro-fluorescent bis-boronic acid. J Am Chem Soc 131(2):438–439

    Article  Google Scholar 

  16. Goldsmith CR, Jaworski J, Sheng M, Lippard SJ (2006) Selective labeling of extracellular proteins containing polyhistidine sequences by a fluorescein-nitrilotriacetic acid conjugate. J Am Chem Soc 128(2):418–419

    Article  Google Scholar 

  17. Ojida A et al (2006) Oligo-Asp tag/Zn(II) complex probe as a new pair for labeling and fluorescence imaging of proteins. J Am Chem Soc 128(32):10452–10459

    Article  Google Scholar 

  18. Franz KJ, Nitz M, Imperiali B (2003) Lanthanide-binding tags as versatile protein coexpression probes. Chembiochem 4(4):265–271

    Article  Google Scholar 

  19. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem 48(38):6974–6998

    Article  Google Scholar 

  20. Rashidian M, Dozier JK, Distefano MD (2013) Enzymatic labeling of proteins: techniques and approaches. Bioconjug Chem 24(8):1277–1294

    Article  Google Scholar 

  21. Sunbul M, Yin J (2009) Site specific protein labeling by enzymatic posttranslational modification. Org Biomol Chem 7(17):3361–3371

    Article  Google Scholar 

  22. Vivero-Pol L, George N, Krumm H, Johnsson K, Johnsson N (2005) Multicolor imaging of cell surface proteins. J Am Chem Soc 127(37):12770–12771

    Article  Google Scholar 

  23. Ishitsuka Y et al (2015) Evaluation of genetically encoded chemical tags as orthogonal fluorophore labeling tools for single-molecule FRET applications. J Phys Chem B 119(22):6611–6619

    Article  Google Scholar 

  24. Lin CW, Ting AY (2006) Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. J Am Chem Soc 128(14):4542–4543

    Article  Google Scholar 

  25. Fernandez-Suarez M et al (2007) Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat Biotechnol 25(12):1483–1487

    Article  Google Scholar 

  26. Mao H, Hart SA, Schink A, Pollok BA (2004) Sortase-mediated protein ligation: a new method for protein engineering. J Am Chem Soc 126(9):2670–2671

    Article  Google Scholar 

  27. La Clair JJ, Foley TL, Schegg TR, Regan CM, Burkart MD (2004) Manipulation of carrier proteins in antibiotic biosynthesis. Chem Biol 11(2):195–201

    Article  Google Scholar 

  28. Yin J, Liu F, Li X, Walsh CT (2004) Labeling proteins with small molecules by site-specific posttranslational modification. J Am Chem Soc 126(25):7754–7755

    Article  Google Scholar 

  29. George N, Pick H, Vogel H, Johnsson N, Johnsson K (2004) Specific labeling of cell surface proteins with chemically diverse compounds. J Am Chem Soc 126(29):8896–8897

    Article  Google Scholar 

  30. Reuter K, Mofid MR, Marahiel MA, Ficner R (1999) Crystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4′-phosphopantetheinyl transferase superfamily. EMBO J 18(23):6823–6831

    Article  Google Scholar 

  31. Lambalot RH et al (1996) A new enzyme superfamily – the phosphopantetheinyl transferases. Chem Biol 3(11):923–936

    Article  Google Scholar 

  32. Zhou Z et al (2007) Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem Biol 2(5):337–346

    Article  Google Scholar 

  33. Yin J et al (2005) Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc Natl Acad Sci U S A 102(44):15815–15820

    Article  Google Scholar 

  34. Ou W et al (2011) Site-specific protein modifications through pyrroline-carboxy-lysine residues. Proc Natl Acad Sci U S A 108(26):10437–10442

    Article  Google Scholar 

  35. Grunewald J et al (2014) Site-specific dual labeling of proteins by using small orthogonal tags at neutral pH. Chembiochem 15(12):1787–1791

    Article  Google Scholar 

  36. Zhou Z, Koglin A, Wang Y, McMahon AP, Walsh CT (2008) An eight residue fragment of an acyl carrier protein suffices for post-translational introduction of fluorescent pantetheinyl arms in protein modification in vitro and in vivo. J Am Chem Soc 130(30):9925–9930

    Article  Google Scholar 

  37. De Nadai T et al (2016) Precursor and mature NGF live tracking: one versus many at a time in the axons. Sci Rep 6:20272

    Article  Google Scholar 

  38. Pippig DA, Baumann F, Strackharn M, Aschenbrenner D, Gaub HE (2014) Protein-DNA chimeras for nano assembly. ACS Nano 8(7):6551–6555

    Article  Google Scholar 

  39. Wilmes S et al (2015) Receptor dimerization dynamics as a regulatory valve for plasticity of type I interferon signaling. J Cell Biol 209(4):579–593

    Article  Google Scholar 

  40. Marchetti L et al (2014) Site-specific labeling of neurotrophins and their receptors via short and versatile peptide tags. PLoS One 9(11):e113708

    Article  Google Scholar 

  41. Waichman S et al (2010) Functional immobilization and patterning of proteins by an enzymatic transfer reaction. Anal Chem 82(4):1478–1485

    Article  Google Scholar 

  42. Grunewald J et al (2015) Efficient preparation of site-specific antibody-drug conjugates using phosphopantetheinyl transferases. Bioconjug Chem 26(12):2554–2562

    Article  Google Scholar 

  43. Sieber SA, Walsh CT, Marahiel MA (2003) Loading peptidyl-coenzyme A onto peptidyl carrier proteins: a novel approach in characterizing macrocyclization by thioesterase domains. J Am Chem Soc 125(36):10862–10866

    Article  Google Scholar 

  44. Grunewald J et al (2017) Optimization of an enzymatic antibody-drug conjugation approach based on coenzyme A analogs. Bioconjug Chem 28(7):1906–1915

    Article  Google Scholar 

  45. Meier JL, Mercer AC, Rivera H Jr, Burkart MD (2006) Synthesis and evaluation of bioorthogonal pantetheine analogues for in vivo protein modification. J Am Chem Soc 128(37):12174–12184

    Article  Google Scholar 

  46. Carter P et al (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 89(10):4285–4289

    Article  Google Scholar 

  47. Strop P et al (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 20(2):161–167

    Article  Google Scholar 

  48. Rashidian M et al (2013) A highly efficient catalyst for oxime ligation and hydrazone-oxime exchange suitable for bioconjugation. Bioconjug Chem 24(3):333–342

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from Tetsuo Uno, Yunho Jin, Hsien-Po Chiu, Xing Wang, and Yongqin Wan, who synthesized analogs of pantoate, pantothenate, and coenzyme A, as well as auristatins. Julie Vance’s efforts were instrumental in the production of CoA biosynthetic enzymes and PPTases. The authors further thank Badry Bursulaya for conjugation site modelling, as well as Heath E. Klock, Susan E. Cellitti, and Paula Patterson for generating a library of peptide-tagged antibodies that enabled the subsequent profiling of conjugation sites. We are also indebted to Daniel McMullan, Hung Tong, David Jones, and Jessica Read for purification and biophysical characterization of the immunoconjugates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Grünewald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grünewald, J., Brock, A., Geierstanger, B.H. (2019). Site-Specific Antibody Labeling Using Phosphopantetheinyl Transferase-Catalyzed Ligation. In: Nuijens, T., Schmidt, M. (eds) Enzyme-Mediated Ligation Methods. Methods in Molecular Biology, vol 2012. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9546-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9546-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9545-5

  • Online ISBN: 978-1-4939-9546-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics