Skip to main content

In Vitro and In Planta Cyclization of Target Peptides Using an Asparaginyl Endopeptidase from Oldenlandia affinis

  • Protocol
  • First Online:
Enzyme-Mediated Ligation Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2012))

Abstract

Cyclization of the peptide backbone by connecting the N- and C-terminus can endow target peptides with favorable properties, such as increased stability or potential oral bioavailability. However, there are few tools available for carrying out this modification. Asparaginyl endopeptidases (AEPs) are a class of enzymes that typically work as proteases, but a subset is highly efficient at cyclization of the peptide backbone. In this chapter we describe how to utilize a cyclizing AEP (OaAEP1b) to produce backbone-cyclized peptides both in planta and in vitro. Using the in planta method, OaAEP1b and the target precursor peptide are coexpressed in the leaves of the model plant Nicotiana benthamiana, and cyclization of the target peptide occurs in planta. Using the in vitro method, purified recombinant OaAEP1b produced in bacteria is used to cyclize the target precursor peptide in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark RJ, Jensen J, Nevin ST et al (2010) The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew Chem Int Ed Engl 49:6545–6548

    Article  CAS  Google Scholar 

  2. Chan LY, Zhang VM, Huang Y et al (2013) Cyclization of the antimicrobial peptide gomesin with native chemical ligation: influences on stability and bioactivity. ChemBioChem 14:617–624

    Article  CAS  Google Scholar 

  3. Wong CTT, Rowlands DK, Wong CH et al (2012) Orally active peptidic bradykinin B 1 receptor antagonists engineered from a cyclotide scaffold for inflammatory pain treatment. Angew Chem Int Ed 51:5620–5624

    Article  CAS  Google Scholar 

  4. Shafee T, Harris K, Anderson M (2015) Biosynthesis of cyclotides. In: Craik DJ (ed) Advances in botanical research, plant cyclotides. Elsevier Ltd, London

    Google Scholar 

  5. Harris KS, Durek T, Kaas Q et al (2015) Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase. Nat Commun 6:10199

    Article  CAS  Google Scholar 

  6. Nguyen GKT, Wang S, Qiu Y et al (2014) Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat Chem Biol 10:732–738

    Article  CAS  Google Scholar 

  7. Jackson MA, Gilding EK, Shafee T et al (2018) Molecular basis for the production of cyclic peptides by plant asparaginyl endopeptidases. Nat Commun 9:2411

    Article  CAS  Google Scholar 

  8. Poon S, Harris KS, Jackson MA et al (2018) Co-expression of a cyclizing asparaginyl endopeptidase enables efficient production of cyclic peptides in planta. J Exp Bot 69:633–641

    Article  CAS  Google Scholar 

  9. Nguyen GKT, Cao Y, Wang W et al (2015) Site-specific N-terminal labeling of peptides and proteins using butelase 1 and thiodepsipeptide. Angew Chem Int Ed 54:15694–15698

    Article  CAS  Google Scholar 

  10. Cao Y, Nguyen GKT, Chuah S et al (2016) Butelase-mediated ligation as an efficient bioconjugation wethod for the synthesis of peptide dendrimers. Bioconjug Chem 27:2592–2596

    Article  CAS  Google Scholar 

  11. Craik DJ, Daly NL, Bond T et al (1999) Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 294:1327–1336

    Article  CAS  Google Scholar 

  12. Colgrave ML, Craik DJ (2004) Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry 43:5965–5975

    Article  CAS  Google Scholar 

  13. Jennings C, West J, Waine C et al (2001) Biosynthesis and insecticidal properties of plant cyclotides : the cyclic knotted proteins from Oldenlandia affinis. Proc Natl Acad Sci U S A 98:10614–10619

    Article  CAS  Google Scholar 

  14. Plan MR, Saska I, Cagauan AG et al (2008) Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (Golden Apple Snail). J Agric Food Chem 56:5237–5241

    Article  CAS  Google Scholar 

  15. Colgrave ML, Kotze AC, Huang Y et al (2008) Cyclotides: natural, circular plant peptides that possess significant activity against gastrointestinal nematode parasites of Sheep. Biochem 47:5581–5589

    Article  CAS  Google Scholar 

  16. Colgrave ML, Kotze AC, Kopp S et al (2009) Anthelmintic activity of cyclotides: in vitro studies with canine and human hookworms. Acta Trop 109:163–166

    Article  CAS  Google Scholar 

  17. Poth AG, Chan LY, Craik DJ (2013) Cyclotides as grafting frameworks for protein engineering and drug design applications. Biopolymers 100:480–491

    Article  CAS  Google Scholar 

  18. Sparkes IA, Runions J, Kearns A et al (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  Google Scholar 

  19. Harris KS, Casey JL, Coley AM et al (2005) Binding hot spot for invasion inhibitory molecules on Plasmodium falciparum apical membrane antigen 1. Infect Immun 73:6981–6989

    Article  CAS  Google Scholar 

  20. Catanzariti A, Soboleva TA, Jans DA et al (2004) An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Sci 13:1331–1339

    Article  CAS  Google Scholar 

  21. Peyret H, Lomonossoff GP (2013) The pEAQ vector series: the easy and quick way to produce recombinant proteins in plants. Plant Mol Biol 83:51–58

    Article  CAS  Google Scholar 

  22. Gleba YY, Tusé D, Giritch A (2013) Plant viral vectors for delivery by Agrobacterium. In: Palmer K, Gleba Y (eds) Plant viral vectors. Current topics in microbiology and immunology. Springer, Berlin

    Google Scholar 

  23. Horsch RB, Fry JE, Hoffmann NL et al (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  24. Yeshak MY, Burman R, Eriksson C et al (2012) Optimization of cyclotide extraction parameters. Phytochem Lett 5:776–781

    Article  CAS  Google Scholar 

  25. Craik DJ, Henriques ST, Mylne JS et al (2012) Cyclotide isolation and characterization. Methods Enzymol 516:37–62

    Article  CAS  Google Scholar 

  26. Copeland RA (2002) Enzymes: a practical introduction to structure, mechanism, and data analysis, 2nd edn. Wiley-VCH, Inc, New York, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn A. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Harris, K.S., Poon, S., Quimbar, P., Anderson, M.A. (2019). In Vitro and In Planta Cyclization of Target Peptides Using an Asparaginyl Endopeptidase from Oldenlandia affinis. In: Nuijens, T., Schmidt, M. (eds) Enzyme-Mediated Ligation Methods. Methods in Molecular Biology, vol 2012. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9546-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9546-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9545-5

  • Online ISBN: 978-1-4939-9546-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics