Skip to main content

SpyLigase-Catalyzed Modification of Antibodies

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2012))

Abstract

Immunoconjugates are essential tools in diagnostics for the detection and quantification of proteins and in cell biology for the characterization of different cell populations as well as for tracking intracellular pathways. In recent years, antibody–drug conjugates (ADCs) have emerged as promising therapeutics to treat cancer and have moved into the focus of interest of the pharmaceutical industry. Here we describe a conjugation method for the generation of antibody conjugates that relies on the formation of a spontaneous isopeptide bond between two peptide tags referred to as SpyTag and KTag. This reaction is catalyzed by SpyLigase, an engineered cell surface protein obtained from Streptococcus pyogenes. We describe the preparation of SpyLigase by expression from E. coli cells, chemical solid-phase synthesis of the KTag peptide and its coupling to reporter molecules and cytotoxins as well as the transient expression from mammalian cells to produce Spy-tagged antibodies. Furthermore, we describe the purification and analytics of the formed conjugates.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lambert JM, Berkenblit A (2018) Antibody–drug conjugates for cancer treatment. Annu Rev Med 69:191–207

    Article  CAS  Google Scholar 

  2. Ducry L (2012) Challenges in the development and manufacturing of antibody-drug conjugates. Methods Mol Biol 899:489–497

    Article  CAS  Google Scholar 

  3. Wagh A, Song H, Zeng M et al (2018) Challenges and new frontiers in analytical characterization of antibody-drug conjugates. MAbs 10:222–243

    Article  CAS  Google Scholar 

  4. Hamblett KJ, Senter PD, Chace DF et al (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070

    Article  CAS  Google Scholar 

  5. Sun X, Ponte JF, Yoder NC et al (2017) Effects of drug-antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody-maytansinoid conjugates. Bioconjug Chem 28:1371–1381

    Article  CAS  Google Scholar 

  6. Schumacher D, Hackenberger CPR, Leonhardt H et al (2016) Current status: site-specific antibody drug conjugates. J Clin Immunol 36:100–107

    Article  CAS  Google Scholar 

  7. Junutula JRJR, Raab H, Clark S et al (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26:925–932

    Article  CAS  Google Scholar 

  8. Badescu G, Bryant P, Bird M et al (2014) Bridging disulfides for stable and defined antibody drug conjugates. Bioconjug Chem 25:1124–1136

    Article  CAS  Google Scholar 

  9. Jones MW, Strickland RA, Schumacher FF et al (2012) Polymeric dibromomaleimides as extremely efficient disulfide bridging bioconjugation and pegylation agents. J Am Chem Soc 134:1847–1852

    Article  CAS  Google Scholar 

  10. Maruani A, Smith MEB, Miranda E et al (2015) A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nat Commun 6:6645

    Article  CAS  Google Scholar 

  11. Beerli RR, Hell T, Merkel AS et al (2015) Sortase enzyme-mediated generation of site-specifically conjugated antibody drug conjugates with high in vitro and in vivo potency. PLoS One 10:e0131177

    Article  Google Scholar 

  12. Dennler P, Chiotellis A, Fischer E et al (2014) Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody–drug conjugates. Bioconjug Chem 25:569–578

    Article  CAS  Google Scholar 

  13. Strop P, Liu SH, Dorywalska M et al (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 20:161–167

    Article  CAS  Google Scholar 

  14. Lhospice F, Brégeon D, Belmant C et al (2015) Site-specific conjugation of monomethyl auristatin e to anti-CD30 antibodies improves their pharmacokinetics and therapeutic index in rodent models. Mol Pharm 12:1863–1871

    Article  CAS  Google Scholar 

  15. Siegmund V, Piater B, Zakeri B et al (2016) Spontaneous isopeptide bond formation as a powerful tool for engineering site-specific antibody-drug conjugates. Sci Rep 6:39291

    Article  CAS  Google Scholar 

  16. Kang HJ, Coulibaly F, Clow F et al (2007) Stabilizing isopeptide bonds revealed in gram-positive bacterial pilus structure. Science 318:1625–1628

    Article  CAS  Google Scholar 

  17. Zakeri B, Fierer JO, Celik E et al (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109:E690–E697

    Article  CAS  Google Scholar 

  18. Zakeri B, Howarth M (2010) Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting. J Am Chem Soc 132:4526–4527

    Article  CAS  Google Scholar 

  19. Fierer JO, Veggiani G, Howarth M (2014) SpyLigase peptide-peptide ligation polymerizes affibodies to enhance magnetic cancer cell capture. Proc Natl Acad Sci U S A 111:E1176–E1181

    Article  CAS  Google Scholar 

  20. Buldun CM, Jean JX, Bedford MR et al (2018) SnoopLigase catalyzes peptide-peptide locking and enables solid-phase conjugate isolation. J Am Chem Soc 140:3008–3018

    Article  CAS  Google Scholar 

  21. Lefranc MP (2003) IMGT, the international ImMunoGeneTics database®. Nucleic Acids Res 31(1):307

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This protocol has been developed within a project that has been funded by Merck KGaA Darmstadt in the context of the Merck Biopharma Innovation Cup. The authors thank Ulrich A. K. Betz and the members of the team Chemo- and Bioengineering namely Bijan Zakeri, Pedro Matos, Sara Cleto, Darryl Gibbings-Isaac, and Reswita Dery G from the Innovation Cup 2013 and Siegfried Neumann for giving inspiration for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Siegmund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Siegmund, V., Piater, B., Fischer, F., Kolmar, H. (2019). SpyLigase-Catalyzed Modification of Antibodies. In: Nuijens, T., Schmidt, M. (eds) Enzyme-Mediated Ligation Methods. Methods in Molecular Biology, vol 2012. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9546-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9546-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9545-5

  • Online ISBN: 978-1-4939-9546-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics