Skip to main content

Mouse Models of Yersiniosis

  • Protocol
  • First Online:
Pathogenic Yersinia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2010))

Abstract

Yersiniosis is common foodborne gastrointestinal disease caused by the enteric pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis. The mouse model of oral infection serves as a useful tool to study enteropathogenic Yersinia infection in mammals. The following protocol describes two distinct oral infection methods: the commonly used oral gavage method in which the bacterial inoculum is instilled directly into the mouse stomach using a feeding needle, and an alternative method in which mice are fed bread soaked with Yersinia culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galindo C, Rosenzweig J, Kirtley M et al (2011) Pathogenesis of Y. enterocolitica and Y. pseudotuberculosis in human yersiniosis. J Pathogens 2011:182051

    Article  Google Scholar 

  2. Weinberg E (2000) Microbial pathogens with impaired ability to acquire host iron. Biometals 13:85–89

    Article  CAS  Google Scholar 

  3. Lawrenz M (2010) Model systems to study plague pathogenesis and develop new therapeutics. Front Microbiol 1:119

    Article  Google Scholar 

  4. Handley S, Dube P, Revell P et al (2004) Characterization of oral Yersinia enterocolitica infection in three different strains of inbred mice. Infect Immun 72:1645–1656

    Article  CAS  Google Scholar 

  5. Carter P (1975) Animal model of human disease. Yersinia enteritis. Animal model: oral Yersinia enterocolitica infection of mice. Am J Pathol 81:703–706

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Carter P, Collins F (1974) Experimental Yersinia enterocolitica infection in mice: kinetics of growth. Infect Immun 9:851–857

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Trülzsch K, Oellerich M, Heesemann J (2007) Invasion and dissemination of Yersinia enterocolitica in the mouse infection model. Adv Exp Med Biol 603:279–285

    Article  Google Scholar 

  8. Davis K, Mohammadi S, Isberg R (2015) Community behavior and spatial regulation within a bacterial microcolony in deep tissue sites serves to protect against host attack. Cell Host Microbe 17:21–31

    Article  CAS  Google Scholar 

  9. Grützkau A, Hanski C, Hahn H et al (1990) Involvement of M cells in the bacterial invasion of Peyer’s patches: a common mechanism shared by Yersinia enterocolitica and other enteroinvasive bacteria. Gut 31:1011–1015

    Article  Google Scholar 

  10. Marra A, Isberg R (1997) Invasin-dependent and invasin-independent pathways for translocation of Yersinia pseudotuberculosis across the Peyer’s patch intestinal epithelium. Infect Immun 65:3412–3421

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Barnes P, Bergman M, Mecsas J et al (2006) Yersinia pseudotuberculosis disseminates directly from a replicating bacterial pool in the intestine. J Exp Med 203:1591–1601

    Article  CAS  Google Scholar 

  12. Handley S, Newberry R, Miller V (2005) Yersinia enterocolitica invasin-dependent and invasin-independent mechanisms of systemic dissemination. Infect Immun 73:8453–8455

    Article  CAS  Google Scholar 

  13. Mecsas J, Bilis I, Falkow S (2001) Identification of attenuated Yersinia pseudotuberculosis strains and characterization of an orogastric infection in BALB/c mice on day 5 postinfection by signature-tagged mutagenesis. Infect Immun 69:2779–2787

    Article  CAS  Google Scholar 

  14. Clark M, Hirst B, Jepson M (1998) M-cell surface β1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer’s patch M cells. Infect Immun 66:1237–1243

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Trülzsch K, Sporleder T, Igwel E et al (2004) Contribution of the major secreted yops of Yersinia enterocolitica O: 8 to pathogenicity in the mouse infection model. Infect Immun 72:5227–5234

    Article  Google Scholar 

  16. Trcek J, Berschl K, Trülzsch K (2010) In vivo analysis of Yersinia enterocolitica infection using luxCDABE. FEMS Microbiol Lett 307:201–206

    Article  CAS  Google Scholar 

  17. Pepe J, Wachtel M, Wagar E et al (1995) Pathogenesis of defined invasion mutants of Yersinia enterocolitica in a BALB/c mouse model of infection. Infect Immun 63:4837–4848

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Balada-Llasat J, Mecsas J (2006) Yersinia has a tropism for B and T cell zones of lymph nodes that is independent of the type III secretion system. PLoS Pathog 2:e86

    Article  Google Scholar 

  19. Crimmins G, Mohammadi S, Green E et al (2012) Identification of MrtAB, an ABC transporter specifically required for Yersinia pseudotuberculosis to colonize the mesenteric lymph nodes. PLoS Pathog 8:e1002828

    Article  CAS  Google Scholar 

  20. Miller H, Kwuan L, Schwiesow L et al (2014) IscR is essential for Yersinia pseudotuberculosis type III secretion and virulence. PLoS Pathog 10:e1004194

    Article  Google Scholar 

  21. Miller H, Schwiesow L, Au-Yeung W et al (2016) Hereditary hemochromatosis predisposes mice to Yersinia pseudotuberculosis infection even in the absence of the type III secretion system. Front Cell Infect Microbiol 6:69

    Article  Google Scholar 

  22. Autenrieth I, Kempf V, Sprinz T et al (1996) Defense mechanisms in Peyer’s patches and mesenteric lymph nodes against Yersinia enterocolitica involve integrins and cytokines. Infect Immun 64:1357–1368

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Autenrieth I, Beer M, Bohn E et al (1994) Immune responses to Yersinia enterocolitica in susceptible BALB/c and resistant C57BL/6 mice: an essential role for gamma interferon. Infect Immun 62:2590–2599

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Westermark L, Fahlgren A, Fällman M (2014) Yersinia pseudotuberculosis efficiently escapes polymorphonuclear neutrophils during early infection. Infect Immun 82:1181–1191

    Article  Google Scholar 

  25. Costa T, Amer A, Farag S et al (2013) Type III secretion translocon assemblies that attenuate Yersinia virulence. Cell Microbiol 15:1088–1110

    Article  CAS  Google Scholar 

  26. Nuss A, Beckstette M, Pimenova M et al (2017) Tissue dual RNA-seq allows fast discovery of infection-specific functions and riboregulators shaping host–pathogen transcriptomes. Proc Natl Acad Sci 114:E791–E800

    Article  CAS  Google Scholar 

  27. Auerbuch V, Golenbock D, Isberg R (2009) Innate immune recognition of Yersinia pseudotuberculosis type III secretion. PLoS Pathog 5:e1000686

    Article  Google Scholar 

  28. Ghanem E, Myers-Morales T, Jones G et al (2013) Oral transmission of Listeria monocytogenes in mice via ingestion of contaminated food. J Vis Exp 74:e50381

    Google Scholar 

  29. Echeverry A, Schesser K, Adkins B (2007) Murine neonates are highly resistant to Yersinia enterocolitica following orogastric exposure. Infect Immun 75:2234–2243

    Article  CAS  Google Scholar 

  30. Tennant S, Hartland E, Phumoonna T et al (2008) Influence of gastric acid on susceptibility to infection with ingested bacterial pathogens. Infect Immun 76:639–645

    Article  CAS  Google Scholar 

  31. Singh A, McFeters G (1987) Survival and virulence of copper and chlorine-stressed Yersinia enterocolitica in experimentally infected mice. Appl Environ Microbiol 53:1768–1774

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Susannah McKay and Daniel Portnoy for technical advice in establishing the bread feeding model in Yersinia. D.H.-R. is supported by a Ford Foundation fellowship. The mouse infection data shown are taken from the work supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Numbers R21AI099747 and R01AI119082 (to V.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Auerbuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hooker-Romero, D., Schwiesow, L., Wei, Y., Auerbuch, V. (2019). Mouse Models of Yersiniosis. In: Vadyvaloo, V., Lawrenz, M. (eds) Pathogenic Yersinia. Methods in Molecular Biology, vol 2010. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9541-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9541-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9540-0

  • Online ISBN: 978-1-4939-9541-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics