Skip to main content

An Intradermal Model for Yersinia pestis Inoculation

  • Protocol
  • First Online:
Book cover Pathogenic Yersinia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2010))

  • 635 Accesses

Abstract

The dermis and the subcutaneous space vary in many fundamental characteristics, which include composition of lymphatic vessels, density of blood vasculature, and cells of the immune response. Traditional approaches employ the subcutaneous space as the preferred layer of the skin to inoculate Yersinia pestis for bubonic plague studies. Because fleas transmit Y. pestis in nature, and because these insects target the dermal layer of the skin, an intradermal model of infection is more biologically relevant than a subcutaneous model. Among many features, the use of an intradermal model results in robust and reproducible colonization of lymph nodes, blood, and deeper tissues. Remarkably, intradermal inoculation in the murine ear pinna also allows for the study of cutaneous infection without severely disrupting the architecture and physiology of the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacot AW, Martin CJ (1914) Observations on the mechanism of the transmission of plague by fleas. J Hyg (Lond) 13:423–439

    CAS  Google Scholar 

  2. Hinnebusch BJ (2005) The evolution of flea-borne transmission in Yersinia pestis. Curr Issues Mol Biol 7:197–212

    CAS  PubMed  Google Scholar 

  3. Lorange EA, Race BL, Sebbane F, Hinnebusch BJ (2005) Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J Infect Dis 191:1907–1912

    Article  Google Scholar 

  4. Demeure CE, Blanchet C, Fitting C, Fayolle C, Khun H, Szatanik M, Milon G, Panthier J-J, Jaubert J, Montagutelli X, Huerre M, Cavaillon J-M, Carniel E (2012) Early systemic bacterial dissemination and a rapid innate immune response characterize genetic resistance to plague of SEG mice. J Infect Dis 205:134–143

    Article  CAS  Google Scholar 

  5. Cathelyn JS, Crosby SD, Lathem WW, Goldman WE, Miller VL (2006) RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci U S A 103:13514–13519

    Article  CAS  Google Scholar 

  6. Oyston PC, Dorrell N, Williams K, Li SR, Green M, Titball RW, Wren BW (2000) The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. Infect Immun 68:3419–3425

    Article  CAS  Google Scholar 

  7. Guinet F, Carniel E (2003) A technique of intradermal injection of Yersinia to study Y. pestis physiopathology. Adv Exp Med Biol 529:73–78

    Article  Google Scholar 

  8. Sebbane F, Jarrett CO, Gardner D, Long D, Hinnebusch BJ (2006) Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc Natl Acad Sci U S A 103:5526–5530

    Article  CAS  Google Scholar 

  9. Chong SZ, Evrard M, Ng LG (2013) Lights, camera, and action: vertebrate skin sets the stage for immune cell interaction with arthropod-vectored pathogens. Front Immunol 4:286

    Article  Google Scholar 

  10. Gonzalez RJ, Weening EH, Lane MC, Miller VL (2015) Comparison of models for bubonic plague reveals unique pathogen adaptations to the dermis. Infect Immun 83(7):2855–2861. https://doi.org/10.1128/IAI.00140-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Teunissen MBM, Haniffa M, Collin MP (2012) Insight into the immunobiology of human skin and functional specialization of skin dendritic cell subsets to innovate intradermal vaccination design. Curr Top Microbiol Immunol 351:25–76

    CAS  PubMed  Google Scholar 

  12. Combadiere B, Liard C (2011) Transcutaneous and intradermal vaccination. Hum Vaccin 7:811–827

    Article  CAS  Google Scholar 

  13. Shayan R, Achen MG, Stacker SA (2006) Lymphatic vessels in cancer metastasis: bridging the gaps. Carcinogenesis 27:1729–1738

    Article  CAS  Google Scholar 

  14. Skobe M, Detmar M (2000) Structure, function, and molecular control of the skin lymphatic system. J Investig Dermatol Symp Proc 5:14–19

    Article  CAS  Google Scholar 

  15. Van den Broeck W, Derore A, Simoens P (2006) Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Methods 312:12–19

    Article  Google Scholar 

  16. Gonzalez RJ, Lane MC, Wagner NJ, Weening EH, Miller VL (2015) Dissemination of a highly virulent pathogen: tracking the early events that define infection. PLoS Pathog 11:e1004587

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Virginia L. Miller for kindly reviewing and editing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo J. Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gonzalez, R.J. (2019). An Intradermal Model for Yersinia pestis Inoculation. In: Vadyvaloo, V., Lawrenz, M. (eds) Pathogenic Yersinia. Methods in Molecular Biology, vol 2010. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9541-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9541-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9540-0

  • Online ISBN: 978-1-4939-9541-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics