Skip to main content

Establishing Cell Culture-Based Experimental Setups for Proximity Labeling Using Ascorbate Peroxidase (APEX)

  • Protocol
  • First Online:
Proximity Labeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2008))

  • 3192 Accesses

Abstract

Proximity labeling by ascorbate peroxidase (APEX) requires appropriate experimental setups that generate sufficient signal over background as a prerequisite for downstream analyses by mass spectrometry. Cell culture-based systems are easily accessible, yet, for proximity labeling of small structures must be carefully optimized in order to give satisfying results. How to establish and characterize APEX cell lines will be the topic of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810

    Article  Google Scholar 

  2. Zhuang M, Guan S, Wang H et al (2013) Substrates of IAP ubiquitin ligases identified with a designed orthogonal E3 ligase, the NEDDylator. Mol Cell 49:273–282. https://doi.org/10.1016/j.molcel.2012.10.022

    Article  Google Scholar 

  3. Rhee H-W, Zou P, Udeshi ND et al (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339:1328–1331

    Article  Google Scholar 

  4. Kim DI, Birendra KC, Zhu W et al (2014) Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc Natl Acad Sci 111:E2453–E2461

    Article  Google Scholar 

  5. Liu X, Salokas K, Tamene F et al (2018) An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations. Nat Commun 9:1188

    Article  Google Scholar 

  6. Lobingier BT, Hüttenhain R, Eichel K et al (2017) An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169:350–360.e12

    Article  Google Scholar 

  7. Paek J, Kalocsay M, Staus DP et al (2017) Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell 169:338–349.e11

    Article  Google Scholar 

  8. Tess C Branon, Justin A Bosch, Ariana D Sanchez, Namrata D Udeshi, Tanya Svinkina, Steven A Carr, Jessica L Feldman, Norbert Perrimon, Alice Y Ting (2018) Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol 36(9):880–887

    Google Scholar 

  9. Mick DU, Rodrigues RB, Leib RD et al (2015) Proteomics of primary cilia by proximity labeling. Dev Cell 35:497–512

    Article  Google Scholar 

  10. Gupta GD, Coyaud E, Gonçalves J et al (2015) A dynamic protein interaction landscape of the human centrosome-cilium interface. Cell 163:1484–1499

    Article  Google Scholar 

  11. Lee S-Y, Kang M-G, Park J-S et al (2016) APEX fingerprinting reveals the subcellular localization of proteins of interest. Cell Rep 15:1837–1847

    Article  Google Scholar 

  12. Lam SS, Martell JD, Kamer KJ et al (2015) Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods 12:51–54

    Article  Google Scholar 

  13. Hung V, Zou P, Rhee H-W et al (2014) Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol Cell 55:332–341

    Article  Google Scholar 

  14. Sastri M, Darshi M, Mackey M et al (2017) Sub-mitochondrial localization of the genetic-tagged mitochondrial intermembrane space-bridging components Mic19, Mic60 and Sam50. J Cell Sci 130:3248–3260

    Google Scholar 

  15. Bersuker K, Peterson CWH, To M et al (2018) A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes. Dev Cell 44:97–112.e7

    Article  Google Scholar 

  16. Firat-Karalar EN, Rauniyar N, Yates JR, Stearns T (2014) Proximity interactions among centrosome components identify regulators of centriole duplication. Curr Biol 24:664–670. https://doi.org/10.1016/j.cub.2014.01.067

    Article  Google Scholar 

  17. Mick DU, Dennerlein S, Wiese H et al (2012) MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell 151:1528–1541

    Article  Google Scholar 

  18. Morita E, Arii J, Christensen D, Votteler J, Sundquist WI (2012) Attenuated protein expression vectors for use in siRNA rescue experiments. BioTechniques 0:1–5

    Google Scholar 

  19. Ibrahim SF, van den Engh G (2003) High-speed cell sorting: fundamentals and recent advances. Curr Opin Biotechnol 14(1):5–12

    Article  Google Scholar 

  20. Mick DU, Fox TD, Rehling P (2011) Inventory control: cytochrome c oxidase assembly regulates mitochondrial translation. Nat Rev Mol Cell Biol 12:14–20

    Article  Google Scholar 

Download references

Acknowledgment

I thank Bianca Schrul and members of the Mick lab for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David U. Mick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mick, D.U. (2019). Establishing Cell Culture-Based Experimental Setups for Proximity Labeling Using Ascorbate Peroxidase (APEX). In: Sunbul, M., Jäschke, A. (eds) Proximity Labeling. Methods in Molecular Biology, vol 2008. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9537-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9537-0_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9536-3

  • Online ISBN: 978-1-4939-9537-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics