Skip to main content

Proximity-Driven Site-Specific and Covalent Labeling of Proteins with a TexasRed Fluorophore Reacting (ReacTR) Peptide Tag

  • Protocol
  • First Online:
Proximity Labeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2008))

  • 3033 Accesses

Abstract

It is of vital importance to visualize proteins in living cells noninvasively in order to elucidate their functions. Here, we describe a fast, efficient, and one-step covalent protein labeling method utilizing a small peptide tag called TR512, which was previously engineered to bind to TexasRed fluorophore by phage display. To covalently label proteins with TexasRed fluorophore, proteins of interest (POI) were fused to a reactive TR512 (ReacTR) tag carrying two cysteine residues. Upon addition of TexasRed fluorophore conjugated to N-α-chloroacetamide, a cysteine group of the ReacTR tag rapidly reacts with the electrophilic N-α-chloroacetamide group due to the proximity effect by forming a covalent bond between the fluorophore and ReacTR tag. Our approach uses a small peptide tag and a small-molecule fluorophore for labeling; thereby minimal perturbation on the function and dynamics of the POI is expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. https://doi.org/10.1146/annurev.biochem.67.1.509

    Article  Google Scholar 

  2. Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224. https://doi.org/10.1126/science.1124618

    Article  Google Scholar 

  3. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21(1):86–89. https://doi.org/10.1038/nbt765

    Article  Google Scholar 

  4. Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M, Beaufils F, Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136. https://doi.org/10.1016/j.chembiol.2008.01.007

    Article  Google Scholar 

  5. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3(6):373–382. https://doi.org/10.1021/cb800025k

    Article  Google Scholar 

  6. Sunbul M, Yin J (2009) Site specific protein labeling by enzymatic posttranslational modification. Org Biomol Chem 7(17):3361–3371. https://doi.org/10.1039/b908687k

    Article  Google Scholar 

  7. Lotze J, Reinhardt U, Seitz O, Beck-Sickinger AG (2016) Peptide-tags for site-specific protein labelling in vitro and in vivo. Mol BioSyst 12(6):1731–1745. https://doi.org/10.1039/c6mb00023a

    Article  Google Scholar 

  8. Lin CW, Ting AY (2006) Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. J Am Chem Soc 128(14):4542–4543. https://doi.org/10.1021/ja0604111

    Article  Google Scholar 

  9. Yin J, Straight PD, McLoughlin SM, Zhou Z, Lin AJ, Golan DE, Kelleher NL, Kolter R, Walsh CT (2005) Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc Natl Acad Sci U S A 102(44):15815–15820. https://doi.org/10.1073/pnas.0507705102

    Article  Google Scholar 

  10. Zhou Z, Cironi P, Lin AJ, Xu Y, Hrvatin S, Golan DE, Silver PA, Walsh CT, Yin J (2007) Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem Biol 2(5):337–346. https://doi.org/10.1021/cb700054k

    Article  Google Scholar 

  11. Sunbul M, Yen M, Zou Y, Yin J (2008) Enzyme catalyzed site-specific protein labeling and cell imaging with quantum dots. Chem Commun (Camb) 45:5927–5929. https://doi.org/10.1039/b812162a

    Article  Google Scholar 

  12. Rush JS, Bertozzi CR (2008) New aldehyde tag sequences identified by screening formylglycine generating enzymes in vitro and in vivo. J Am Chem Soc 130(37):12240–12241. https://doi.org/10.1021/ja804530w

    Article  Google Scholar 

  13. Chen I, Howarth M, Lin W, Ting AY (2005) Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Methods 2(2):99–104. https://doi.org/10.1038/nmeth735

    Article  Google Scholar 

  14. Fernandez-Suarez M, Baruah H, Martinez-Hernandez L, Xie KT, Baskin JM, Bertozzi CR, Ting AY (2007) Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat Biotechnol 25(12):1483–1487. https://doi.org/10.1038/nbt1355

    Article  Google Scholar 

  15. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281(5374):269–272

    Article  Google Scholar 

  16. Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, Llopis J, Tsien RY (2002) New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124(21):6063–6076

    Article  Google Scholar 

  17. Halo TL, Appelbaum J, Hobert EM, Balkin DM, Schepartz A (2009) Selective recognition of protein tetraserine motifs with a cell-permeable, pro-fluorescent bis-boronic acid. J Am Chem Soc 131(2):438–439. https://doi.org/10.1021/ja807872s

    Article  Google Scholar 

  18. Eldridge GM, Weiss GA (2011) Hydrazide reactive peptide tags for site-specific protein labeling. Bioconjug Chem 22(10):2143–2153. https://doi.org/10.1021/bc200415v

    Article  Google Scholar 

  19. Nonaka H, Tsukiji S, Ojida A, Hamachi I (2007) Non-enzymatic covalent protein labeling using a reactive tag. J Am Chem Soc 129(51):15777–15779. https://doi.org/10.1021/ja074176d

    Article  Google Scholar 

  20. Uchinomiya S, Nonaka H, Wakayama S, Ojida A, Hamachi I (2013) In-cell covalent labeling of reactive His-tag fused proteins. Chem Commun (Camb) 49(44):5022–5024. https://doi.org/10.1039/c3cc41979g

    Article  Google Scholar 

  21. Wang J, Yu Y, Xia J (2014) Short peptide tag for covalent protein labeling based on coiled coils. Bioconjug Chem 25(1):178–187. https://doi.org/10.1021/bc400498p

    Article  Google Scholar 

  22. Yano Y, Furukawa N, Ono S, Takeda Y, Matsuzaki K (2016) Selective amine labeling of cell surface proteins guided by coiled-coil assembly. Biopolymers 106(4):484–490. https://doi.org/10.1002/bip.22715

    Article  Google Scholar 

  23. Reinhardt U, Lotze J, Zernia S, Morl K, Beck-Sickinger AG, Seitz O (2014) Peptide-templated acyl transfer: a chemical method for the labeling of membrane proteins on live cells. Angew Chem Int Ed Engl 53(38):10237–10241. https://doi.org/10.1002/anie.201403214

    Article  Google Scholar 

  24. Nomura W, Mino T, Narumi T, Ohashi N, Masuda A, Hashimoto C, Tsutsumi H, Tamamura H (2010) Development of crosslink-type tag-probe pairs for fluorescent imaging of proteins. Biopolymers 94(6):843–852. https://doi.org/10.1002/bip.21444

    Article  Google Scholar 

  25. Sunbul M, Nacheva L, Jaschke A (2015) Proximity-induced covalent labeling of proteins with a reactive fluorophore-binding peptide tag. Bioconjug Chem 26(8):1466–1469. https://doi.org/10.1021/acs.bioconjchem.5b00304

    Article  Google Scholar 

  26. Marks KM, Rosinov M, Nolan GP (2004) In vivo targeting of organic calcium sensors via genetically selected peptides. Chem Biol 11(3):347–356. https://doi.org/10.1016/j.chembiol.2004.03.004

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Helmholtz Initiative on Synthetic Biology. Murat Sunbul thanks the Alexander von Humboldt Foundation for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Murat Sunbul or Andres Jäschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sunbul, M., Jäschke, A. (2019). Proximity-Driven Site-Specific and Covalent Labeling of Proteins with a TexasRed Fluorophore Reacting (ReacTR) Peptide Tag. In: Sunbul, M., Jäschke, A. (eds) Proximity Labeling. Methods in Molecular Biology, vol 2008. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9537-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9537-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9536-3

  • Online ISBN: 978-1-4939-9537-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics