Skip to main content

Enzymatic Transfer of Photo-Cross-Linkers for RNA-Protein Photo-Cross-Linking at the mRNA 5′-Cap

  • Protocol
  • First Online:
Proximity Labeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2008))

Abstract

Photo-cross-linking moieties have proven invaluable for elucidating interactions of biomolecules. While methods for site-specific incorporation of those moieties into proteins have been developed, comparable methods for nucleic acids are lacking. Utilizing the inherent specificity of enzymes, methyltransferases (MTase) exhibiting relaxed cosubstrate specificity in combination with synthetic analogs of S-adenosyl-l-methionine (AdoMet) allow for the precise installation of reporter molecules or affinity tags in various biomolecules. In this chapter, we describe AdoMet analogs with photo-cross-linking moieties that—in combination with an MTase—are ideal for site-specific installation. The workflow for chemo-enzymatic installation of photo-cross-linking moieties at the mRNA cap based on AdoMet analogs is given in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Konarska MM, Padgett RA, Sharp PA (1984) Recognition of cap structure in splicing in vitro of mRNA precursors. Cell 38:731–736

    Article  CAS  Google Scholar 

  2. Edery I, Sonenberg N (1985) Cap-dependent RNA splicing in a HeLa nuclear extract. Proc Natl Acad Sci 82:7590–7594

    Article  CAS  Google Scholar 

  3. Köhler A, Hurt E (2007) Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 8:761–773

    Article  Google Scholar 

  4. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745

    Article  CAS  Google Scholar 

  5. Müller-McNicoll M, Neugebauer KM (2013) How cells get the message: dynamic assembly and function of mRNA–protein complexes. Nat Rev Genet 14:275–287

    Article  Google Scholar 

  6. Martînez J, Ren YG, Nilsson P et al (2001) The mRNA cap structure stimulates rate of poly(A) removal and amplifies processivity of degradation. J Biol Chem 276:27923–27929

    Article  Google Scholar 

  7. Wilusz CJ, Wormington M, Peltz SW (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2:237–246

    Article  CAS  Google Scholar 

  8. Preston GW, Wilson AJ (2013) Photo-induced covalent cross-linking for the analysis of biomolecular interactions. Chem Soc Rev 42:3289–3301

    Article  CAS  Google Scholar 

  9. Chin JW, Martin AB, King DS et al (2002) Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc Natl Acad Sci 99:11020–11024

    Article  CAS  Google Scholar 

  10. Ule J, Jensen K, Mele A et al (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37:376–386

    Article  CAS  Google Scholar 

  11. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and MicroRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  CAS  Google Scholar 

  12. Op De Beeck M, Madder A (2012) Sequence specific DNA cross-linking triggered by visible light. J Am Chem Soc 134:10737–10740

    Article  Google Scholar 

  13. Carrette LLG, Gyssels E, Loncke J et al (2014) A mildly inducible and selective cross-link methodology for RNA duplexes. Org Biomol Chem 12:931–935

    Article  CAS  Google Scholar 

  14. Carrette LLG, Gyssels E, De Laet N et al (2016) Furan oxidation based cross-linking: a new approach for the study and targeting of nucleic acid and protein interactions. Chem Commun 52:1539–1554

    Article  CAS  Google Scholar 

  15. Schmidt MJ, Summerer D (2013) Red-light-controlled protein-RNA crosslinking with a genetically encoded furan. Angew Chemie Int Ed 52:4690–4693

    Article  CAS  Google Scholar 

  16. Qiu Z, Lu L, Jian X et al (2008) A diazirine-based nucleoside analogue for efficient DNA interstrand photocross-linking. J Am Chem Soc 130:14398–14399

    Article  CAS  Google Scholar 

  17. Nakamoto K, Ueno Y (2014) Diazirine-containing RNA photo-cross-linking probes for capturing microRNA targets. J Org Chem 79:2463–2472

    Article  CAS  Google Scholar 

  18. Shigdel UK, Zhang J, He C (2008) Diazirine-based DNA photo-cross-linking probes for the study of protein–DNA interactions. Angew Chemie Int Ed 47:90–93

    Article  CAS  Google Scholar 

  19. Buchmueller KL, Hill BT, Platz MS et al (2003) RNA-tethered phenyl azide photocrosslinking via a short-lived indiscriminant electrophile. J Am Chem Soc 125:10850–10861

    Article  CAS  Google Scholar 

  20. Wombacher R, Jäschke A (2008) Probing the active site of a Diels−Alderase ribozyme by photoaffinity cross-linking. J Am Chem Soc 130:8594–8595

    Article  CAS  Google Scholar 

  21. Nowakowska M, Kowalska J, Martin F et al (2014) Cap analogs containing 6-thioguanosine – reagents for the synthesis of mRNAs selectively photo-crosslinkable with cap-binding biomolecules. Org Biomol Chem 12:4841–4847

    Article  CAS  Google Scholar 

  22. Kimoto M, Endo M, Mitsui T et al (2004) Site-specific incorporation of a photo-crosslinking component into RNA by T7 transcription mediated by unnatural base pairs. Chem Biol 11:47–55

    Article  CAS  Google Scholar 

  23. Stecher H, Tengg M, Ueberbacher BJ et al (2009) Biocatalytic Friedel-Crafts alkylation using non-natural cofactors. Angew Chemie Int Ed 48:9546–9548

    Article  CAS  Google Scholar 

  24. Peters W, Willnow S, Duisken M et al (2010) Enzymatic site-specific functionalization of protein methyltransferase substrates with alkynes for click labeling. Angew Chemie Int Ed 49:5170–5173

    Article  CAS  Google Scholar 

  25. Dalhoff C, Lukinavičius G, Klimasauskas S et al (2006) Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases. Nat Chem Biol 2:31–32

    Article  CAS  Google Scholar 

  26. Lukinavičius G, Lapiene V, Staševskij Z et al (2007) Targeted labeling of DNA by methyltransferase-directed transfer of activated groups (mTAG). J Am Chem Soc 129:2758–2759

    Article  Google Scholar 

  27. Holstein JM, Stummer D, Rentmeister A (2015) Engineering Giardia lamblia trimethylguanosine synthase (GlaTgs2) to transfer non-natural modifications to the RNA 5′-cap. Protein Eng Des Sel 28:179–186

    Article  CAS  Google Scholar 

  28. Schulz D, Holstein JM, Rentmeister A (2013) A chemo-enzymatic approach for site-specific modification of the RNA cap. Angew Chemie Int Ed 52:7874–7878

    Article  CAS  Google Scholar 

  29. Muttach F, Mäsing F, Studer A et al (2017) New AdoMet analogues as tools for enzymatic transfer of photo-cross-linkers and capturing RNA-protein interactions. Chem A Eur J 23:5988–5993

    Article  CAS  Google Scholar 

  30. Schulz D, Rentmeister A (2012) An enzyme-coupled high-throughput assay for screening RNA methyltransferase activity in E. coli cell lysate. RNA Biol 9:577–586

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A. R. gratefully acknowledges financial support from the Emmy Noether-Programme of the Deutsche Forschungsgemeinschaft (RE 2796/2-1) and the Fonds der Chemischen Industrie. This work was partly supported by the Deutsche Forschungsgemeinschaft, DFG EXC 1003 Cells in Motion—Cluster of Excellence, Münster, Germany. We would like to thank Prof. Birgit Dräger (University of Halle, Germany) for plasmids encoding LuxS and MTAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Rentmeister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Muthmann, N., Muttach, F., Rentmeister, A. (2019). Enzymatic Transfer of Photo-Cross-Linkers for RNA-Protein Photo-Cross-Linking at the mRNA 5′-Cap. In: Sunbul, M., Jäschke, A. (eds) Proximity Labeling. Methods in Molecular Biology, vol 2008. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9537-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9537-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9536-3

  • Online ISBN: 978-1-4939-9537-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics