Skip to main content

Reconstitution of the Rhodopsin–Transducin Complex into Lipid Nanodiscs

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2009))

Abstract

Transmembrane proteins, such as G protein-coupled receptors (GPCR), require solubilization in detergents prior to purification. The recent development of novel detergents has allowed for the stabilization of GPCRs, which typically have a high degree of structural flexibility and are otherwise subject to denaturation. However, the detergent micelle environment is still very different from the native lipid membrane and the activity of GPCRs can be profoundly affected by interactions with annular lipid molecules. Moreover, GPCRs are often palmitoylated at their intracellular side, and a lipid bilayer environment would allow for proper orientation of these lipid modifications. Therefore, a reconstituted lipid bilayer environment would best mimic the physiological receptor microenvironment for biophysical studies of GPCRs and nanodiscs provide a methodology to address this aim. Nanodiscs are lipid bilayer discs stabilized by amphipathic membrane scaffolding proteins (MSP) where detergent-solubilized transmembrane proteins can be incorporated into them through a self-assembly process. Here we present a method for reconstituting the purified detergent-solubilized rhodopsintransducin complex, the GPCRG protein complex in visual phototransduction, into nanodiscs. The resulting complex incorporated into lipid nanodiscs can be used in biophysical studies including small-angle X-ray scattering and electron microscopy. This method is applicable to integral membrane proteins that mediate protein lipidation, including the zDHHC-family of S-acyltransferases and membrane-bound O-acyltransferases.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Preininger AM, Meiler J, Hamm H (2013) Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: a perspective. J Mol Biol 425:2288–2298

    Article  CAS  Google Scholar 

  2. Chae PS, Rasmussen SGF, Rana R et al (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7:1003–1008

    Article  CAS  Google Scholar 

  3. Chae PS, Rasmussen SGF, Rana R et al (2012) A new class of amphiphiles bearing rigid hydrophobic groups for solubilization and stabilization of membrane proteins. Chemistry 18:9485–9490

    Article  CAS  Google Scholar 

  4. Brown MF (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids 73:159–180

    Article  CAS  Google Scholar 

  5. Kaya AI, Thaker TM, Preininger AM et al (2011) Coupling efficiency of rhodopsin and transducin in bicelles. Biochemistry 50:3193–3203

    Article  CAS  Google Scholar 

  6. Li J, Edwards PC, Burghammer M et al (2004) Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol 343:1409–1438

    Article  CAS  Google Scholar 

  7. Goddard AD, Watts A (2012) Regulation of G protein-coupled receptors by palmitoylation and cholesterol. BMC Biol 10:27

    Article  CAS  Google Scholar 

  8. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856

    Article  CAS  Google Scholar 

  9. Ritchie TK, Grinkova YV, Bayburt TH et al (2009) Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231

    Article  CAS  Google Scholar 

  10. Bayburt TH, Sligar SG (2010) Membrane protein assembly into nanodiscs. FEBS Lett 584:1721–1727

    Article  CAS  Google Scholar 

  11. Bayburt TH, Leitz AJ, Xie G et al (2007) Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J Biol Chem 282:14875–14881

    Article  CAS  Google Scholar 

  12. Whorton MR, Jastrzebska B, Park PSH et al (2008) Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem 283:4387–4394

    Article  CAS  Google Scholar 

  13. Bayburt TH, Vishnivetskiy SA, McLean MA et al (2011) Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 286:1420–1428

    Article  CAS  Google Scholar 

  14. Van Eps N, Caro LN, Morizumi T et al (2017) Conformational equilibria of light-activated rhodopsin in nanodiscs. Proc Natl Acad Sci U S A 114:E3268–E3275

    Article  Google Scholar 

  15. Bai XC, McMullan G, Scheres SH (2015) How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 40:49–57

    Article  CAS  Google Scholar 

  16. Gao Y, Cao E, Julius D et al (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534:347–351

    Article  CAS  Google Scholar 

  17. Gao Y, Westfield G, Erickson JW et al (2017) Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex. J Biol Chem 292:14280–14289

    Article  CAS  Google Scholar 

  18. Hagn F, Etzkorn M, Raschle T et al (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919–1925

    Article  CAS  Google Scholar 

  19. Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135(5):1919–1925

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sekar Ramachandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gao, Y., Erickson, J.W., Cerione, R.A., Ramachandran, S. (2019). Reconstitution of the Rhodopsin–Transducin Complex into Lipid Nanodiscs. In: Linder, M. (eds) Protein Lipidation. Methods in Molecular Biology, vol 2009. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9532-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9532-5_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9531-8

  • Online ISBN: 978-1-4939-9532-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics