Skip to main content

Purification of the Rhodopsin–Transducin Complex for Structural Studies

  • Protocol
  • First Online:
Protein Lipidation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2009))

Abstract

G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors and are targets for over 30% of all drugs on the market. Structural information of GPCRs and more importantly that of the complex between GPCRs and their signaling partner heterotrimeric G proteins is of great importance. Here we present a method for the large-scale purification of the rhodopsintransducin complex, the GPCRG protein signaling complex in visual phototransduction, directly from their native retinal membrane using native proteins purified from bovine retinae. Formation of the complex on native membrane is orchestrated in part by the proper engagement of lipid-modified rhodopsin and transducin (i.e., palmitoylation of the rhodopsin C-terminus, myristoylation and farnesylation of the αT and γ1, respectively). The resulting complex is of high purity and stability and has proved suitable for further biophysical and structural studies. The methods described here should be applicable to other recombinantly expressed receptors from insect cells or mamalian cells by forming stable, functional complexes directly on purified cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bjarnadóttir TK et al (2006) Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88:263–273

    Article  Google Scholar 

  2. Santos R et al (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16:19–34

    Article  CAS  Google Scholar 

  3. Fredriksson R, Lagerstrom MC, Lundin LG, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  CAS  Google Scholar 

  4. Simon MI, Strathmann MP, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252:802–808

    Article  CAS  Google Scholar 

  5. Downes GB, Gautam N (1999) The G protein subunit gene families. Genomics 62:544–552

    Article  CAS  Google Scholar 

  6. Li F, De Godoy M, Rattan S (2004) Role of adenylate and guanylate cyclases in β1-, β2-, and β3-adrenoceptor-mediated relaxation of internal anal sphincter smooth muscle. J Pharmacol Exp Ther 308:1111–1120

    Article  CAS  Google Scholar 

  7. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318:1266–1273

    Article  CAS  Google Scholar 

  8. Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4:706–731

    Article  CAS  Google Scholar 

  9. Xu S, Fischetti RF (2007) Design and Performance of a Compact Collimator on GM/CA-CAT At the Advanced Photon Source. Proc SPIE 6665:66650X1–66650X8

    Article  Google Scholar 

  10. Bai XC, McMullan G, Scheres SH (2015) How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 40:49–57

    Article  CAS  Google Scholar 

  11. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–555

    Article  CAS  Google Scholar 

  12. Liang Y-L, Khoshouei M, Radjainia M, Zhang Y et al (2017) Phase-plate cryo-EM structure of a class B GPCR–G-protein complex. Nature 546(7656):118–123

    Article  CAS  Google Scholar 

  13. Zhang Y et al (2017) Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546:248–253

    Article  CAS  Google Scholar 

  14. Stryer L (1991) Visual excitation and recovery. J Biol Chem 266:10711–10714

    CAS  PubMed  Google Scholar 

  15. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  Google Scholar 

  16. Li J, Edwards PC, Burghammer M, Villa C, Schertler GFX (2004) Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol 343:1409–1436

    Article  CAS  Google Scholar 

  17. Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–187

    Article  CAS  Google Scholar 

  18. Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, Hofmann KP, Scheerer P, Ernst OP (2011) Crystal structure of metarhodopsin II. Nature 471:651–655

    Article  CAS  Google Scholar 

  19. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502

    Article  CAS  Google Scholar 

  20. Gao Y et al (2017) Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex. J Biol Chem 292:14280–14289

    Article  CAS  Google Scholar 

  21. Skiba NP, Bae H, Hamm HE (1996) Mapping of effector binding sites of transducin alpha-subunit using G alpha t/G alpha i1 chimeras. J Biol Chem 271:413–424

    Article  CAS  Google Scholar 

  22. Ballesteros JA, Shi L, Javitch JA (2001) Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure–function analysis of rhodopsin-like receptors. Mol Pharmacol 60:1–19

    Article  CAS  Google Scholar 

  23. Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269

    Article  CAS  Google Scholar 

  24. Min KC, Gravina SA, Sakmar TP (2000) Reconstitution of the vertebrate visual cascade using recombinant transducin purified from Sf9 cells. Protein Expr Purif 20:514–526

    Article  CAS  Google Scholar 

  25. Ramachandran S, Cerione RA (2011) A dominant-negative Gα mutant that traps a stable rhodopsin-Gα-GTP-βγ complex. J Biol Chem 286:12702–12711

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sekar Ramachandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gao, Y., Erickson, J.W., Cerione, R.A., Ramachandran, S. (2019). Purification of the Rhodopsin–Transducin Complex for Structural Studies. In: Linder, M. (eds) Protein Lipidation. Methods in Molecular Biology, vol 2009. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9532-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9532-5_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9531-8

  • Online ISBN: 978-1-4939-9532-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics