Advertisement

In Vivo Measurement of H2S, Polysulfides, and “SSNO Mix”-Mediated Vasoactive Responses and Evaluation of Ten Hemodynamic Parameters from Rat Arterial Pulse Waveform

  • Frantisek KristekEmail author
  • Marian Grman
  • Karol Ondrias
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2007)

Abstract

The chapter describes protocols and pitfalls in in vivo studies of drug effects on anesthetized rats. It focuses on the preparation of Na2S, Na2S4, and “SSNO mix” solutions for rat intravenous administration, surgical preparation of jugular vein for drug administration, and preparation of carotid and tail arteries for recording of arterial pulse waveform (APW) at high resolution. It describes evaluation of ten hemodynamic parameters from APW and measurement of apparent pulse wave velocity.

Key words

Rat blood pressure Arterial pulse waveform Carotid artery Jugular vein Hemodynamic parameters H2Na2S4 SSNO 

Notes

Acknowledgments

This work was supported by the Slovak Research and Development Agency under contract No. APVV-15-0371 and financial support by Slovak grants VEGA 2/0067/13, 2/0048/17, 2/0079/19, Ministry of Health of the Slovak Republic under the project registration number 2012/51-SAV-1 and APVV-15-0565.

References

  1. 1.
    Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896CrossRefGoogle Scholar
  2. 2.
    Filipovic MR, Eberhardt M, Prokopovic V, Mijuskovic A, Orescanin-Dusic Z, Reeh P et al (2013) Beyond H2S and NO interplay: hydrogen sulfide and nitroprusside react directly to give nitroxyl (HNO). A new pharmacological source of HNO. J Med Chem 56:1499–1508.  https://doi.org/10.1021/jm3012036CrossRefPubMedGoogle Scholar
  3. 3.
    Kimura H (2014) Hydrogen sulfide and polysulfides as biological mediators. Molecules 19:16146–16157.  https://doi.org/10.3390/molecules191016146CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cortese-Krott MM, Kuhnle GGC, Dyson A, Fernandez BO, Grman M, DuMond JF et al (2015) Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl. Proc Natl Acad Sci U S A 112:E4651–E4660.  https://doi.org/10.1152/physrev.00017.2011CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008–6016CrossRefGoogle Scholar
  6. 6.
    Zhang Z, Huang H, Liu P, Tang C, Wang J (2007) Hydrogen sulfide contributes to cardioprotection during ischemia-reperfusion injury by opening KATP channels. Can J Physiol Pharmacol 85:1248–1253CrossRefGoogle Scholar
  7. 7.
    Tomasova L, Pavlovicova M, Malekova L, Misak A, Kristek F, Grman M et al (2015) Effects of AP39, a novel triphenylphosphonium derivatised anethole dithiolethione hydrogen sulfide donor, on rat haemodynamic parameters and chloride and calcium Cav3 and RYR2 channels. Nitric Oxide 46:131–144.  https://doi.org/10.1016/j.niox.2014.12.012CrossRefPubMedGoogle Scholar
  8. 8.
    Drobna M, Misak A, Holland T, Kristek F, Grman M, Tomasova L (2015) Captopril partially decreases the effect of H2S on rat blood pressure and inhibits H2S-induced nitric oxide release from S-nitrosoglutathione. Physiol Res 64:479–486PubMedGoogle Scholar
  9. 9.
    Tomasova L, Dobrowolski L, Jurkowska H, Wróbel M, Huc T, Ondrias K et al (2016a) Intracolonic hydrogen sulfide lowers blood pressure in rats. Nitric Oxide 60:50–58.  https://doi.org/10.1016/j.niox.2016.09.007CrossRefGoogle Scholar
  10. 10.
    Tomasova L, Konopelski P, Ufnal M (2016b) Gut bacteria and hydrogen sulfide: the new old players in circulatory system homeostasis. Molecules 21:pii: E1558.  https://doi.org/10.3390/molecules21111558CrossRefGoogle Scholar
  11. 11.
    Avolio AP, Butlin M, Walsh A (2010) Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment. Physiol Meas 31:R1–R47CrossRefGoogle Scholar
  12. 12.
    Stoner L, Young JM, Fryer S (2012) Assessments of arterial stiffness and endothelial function using pulse wave analysis. Int J Vasc Med 2012:903107PubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang J, Critchley LA, Huang L (2015) Five algorithms that calculate cardiac output from the arterial waveform: a comparison with Doppler ultrasound. Br J Anaesth 115:392–402.  https://doi.org/10.1093/bja/aev254CrossRefPubMedGoogle Scholar
  14. 14.
    Tomasova L, Kristek F, Grman M, Ondriasova E., Ondrias K (2015) Effects of the reaction products of sulfide and Snitrosoglutathione on rat hemodynamic parameters. Nitric Oxide 47: S30–S31.  https://doi.org/10.1016/j.niox.2015.02.074CrossRefGoogle Scholar
  15. 15.
    Wedmann R, Bertlein S, Macinkovic I, Böltz S, Miljkovic JL, Muńoz LE et al (2014) Working with “H2S”: facts and apparent artifacts. Nitric Oxide 41:85–96.  https://doi.org/10.1016/j.niox.2014.06.003CrossRefPubMedGoogle Scholar
  16. 16.
    Hughes MN, Centelles MN, Moore KP (2009) Making and working with hydrogen sulfide: the chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review. Free Radical Biol Med 47:1346–1353CrossRefGoogle Scholar
  17. 17.
    Nagy P, Pálinkás Z, Nagy A, Budai B, Tóth I, Vasas A (2014) Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim Biophys Acta 1840:876–891.  https://doi.org/10.1016/j.bbagen.2013.05.037CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hart TW (1985) Some observations concerning the S-nitroso and S-phenylsulphonyl derivatives of L-cysteine and glutathione. Tetrahedron Lett 26:2013–2026CrossRefGoogle Scholar
  19. 19.
    Grman M, Misak A, Jacob C, Tomaskova Z, Bertova A, Burkholz T et al (2013) Low molecular thiols, pH and O2 modulate H2S-induced S-nitrosoglutathione decomposition—NO release. Gen Physiol Biophys 32:429–441.  https://doi.org/10.4149/gpb_2013026CrossRefPubMedGoogle Scholar
  20. 20.
    Filipovic MR, Miljkovic JL, Nauser T, Royzen M, Klos K, Shubina T, Koppenol WH, Lippard SJ, Ivanović-Burmazović I (2012) Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular cross-talk of H2S and S-nitrosothiols. J Am Chem Soc 134:12016–12027.  https://doi.org/10.1021/ja3009693CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cortese-Krott MM, Fernandez BO, Santos JL, Mergia E, Grman M, Nagy P et al (2014) Nitrosopersulfide (SSNO(-)) accounts for sustained NO bioactivity of S-nitrosothiols following reaction with sulfide. Redox Biol 2:234–244.  https://doi.org/10.1016/j.redox.2013.12.031CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Frantisek Kristek
    • 1
    Email author
  • Marian Grman
    • 2
  • Karol Ondrias
    • 2
  1. 1.Institute of Normal and Pathological Physiology, Centre of Experimental MedicineSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Institute of Clinical and Translational Research, Biomedical Research CenterSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations