Advertisement

Measurement of Protein Persulfidation: Improved Tag-Switch Method

  • Emilia Kouroussis
  • Bikash Adhikari
  • Jasmina Zivanovic
  • Milos R. FilipovicEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2007)

Abstract

Hydrogen sulfide (H2S) is an endogenously produced signaling gasotransmitter, generated by the enzymes cystathionine γ-lyase, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase. The involvement of H2S in numerous physiological, as well as pathophysiological conditions, was established over the past decade. However, the exact mechanism(s) of regulation of the biological functions by H2S are under active investigations. It is proposed that the oxidative posttranslational modification of protein cysteine residues, known as persulfidation, could be the main mechanism of action of H2S. Protein persulfides show similar reactivity to thiols, which represents one of the main obstacles in the development of a reliable method for detection of this specific protein modification. Subsequently, having a selective method for persulfide detection is of utmost importance in order to fully understand the physiological and pathophysiological role of H2S. Several methods have been proposed for the detection of protein persulfidation, all of which are highlighted in this chapter. Furthermore, we provide a detailed description and protocol for the first selective persulfide labeling method, a tag-switch method, developed in our group.

Key words

Hydrogen sulfide Gasotransmitter Oxidative posttranslational modification Persulfide Tag-switch assay CN-BOT CN-Cy3 MSBT 

Notes

Acknowledgments

Authors would like to thank CNRS/INSERM Atip-Avenir and the “Investments for the future” Programme IdEx Bordeaux (ANR-10-IDEX-03-02) for their financial support.

References

  1. 1.
    Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798.  https://doi.org/10.1096/fj.02-0211hypCrossRefPubMedGoogle Scholar
  2. 2.
    Mustafa AK, Gadalla MM, Sen N et al (2009) H2S signals through protein S-sulfhydration. Sci Signal 2:ra72.  https://doi.org/10.1126/scisignal.2000464CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yang G, Wu L, Jiang B et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590.  https://doi.org/10.1126/science.1162667CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kimura H, Nagai Y, Umemura K, Kimura Y (2005) Physiological roles of hydrogen sulfide: synaptic modulation, neuroprotection, and smooth muscle relaxation. Antioxid Redox Signal 7:795–803.  https://doi.org/10.1089/ars.2005.7.795CrossRefPubMedGoogle Scholar
  5. 5.
    Papapetropoulos A, Pyriochou A, Altaany Z et al (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci U S A 106:21972–21977.  https://doi.org/10.1073/pnas.0908047106CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Li L, Bhatia M, Moore PK (2006) Hydrogen sulphide—a novel mediator of inflammation? Curr Opin Pharmacol 6:125–129.  https://doi.org/10.1016/j.coph.2005.10.007CrossRefPubMedGoogle Scholar
  7. 7.
    Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13:499–507.  https://doi.org/10.1038/nrm3391CrossRefGoogle Scholar
  8. 8.
    Kabil O, Motl N, Banerjee R (2014) H2S and its role in redox signaling. Biochim Biophys Acta 1844:1355–1366.  https://doi.org/10.1016/j.bbapap.2014.01.002CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Filipovic MR, Zivanovic J, Alvarez B, Banerjee R (2017) Chemical biology of H S signaling through persulfidation. Chemical Reviews 118(3):1253–1337CrossRefGoogle Scholar
  10. 10.
    Park CM, Macinkovic I, Filipovic MR, Xian M (2015) Use of the “Tag-Switch” method for the detection of protein S-sulfhydration, 1st edn. Methods Enzymol.  https://doi.org/10.1016/bs.mie.2014.11.033Google Scholar
  11. 11.
    Meng F, Yao D, Shi Y et al (2011) Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol Neurodegener 6:34.  https://doi.org/10.1186/1750-1326-6-34CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10:S2–S9.  https://doi.org/10.1038/nm1067CrossRefPubMedGoogle Scholar
  13. 13.
    Gu Z, Nakamura T, Yao D et al (2005) Nitrosative and oxidative stress links dysfunctional ubiquitination to Parkinson’s disease. Cell Death Differ 12:1202–1204.  https://doi.org/10.1038/sj.cdd.4401705CrossRefPubMedGoogle Scholar
  14. 14.
    Cho D-H, Nakamura T, Fang J et al (2009) S-nitrosylation of Drp1 mediates β-amyloid-related mitochondrial fission and neuronal injury. Science 324:102–105.  https://doi.org/10.1126/science.1171091CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fang J, Nakamura T, Cho D-H et al (2007) S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson’s disease. Proc Natl Acad Sci 104:18742–18747.  https://doi.org/10.1073/pnas.0705904104CrossRefPubMedGoogle Scholar
  16. 16.
    Giasson BI, Lee VM-Y, Chung KK et al (2003) Are ubiquitination pathways central to Parkinson’s disease? Cell 114:1–8.  https://doi.org/10.1016/S0092-8674(03)00509-9CrossRefPubMedGoogle Scholar
  17. 17.
    Dawson TM, Dawson VL (2010) The role of parkin in familial and sporadic Parkinson’s disease. Mov Disord 25(Suppl 1):S32–S39.  https://doi.org/10.1002/mds.22798CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vandiver MS, Paul BD, Xu R et al (2013) Sulfhydration mediates neuroprotective actions of parkin. Nat Commun 4:1626.  https://doi.org/10.1038/ncomms2623CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang D, Macinkovic I, Devarie-Baez NO et al (2014) Detection of protein S-sulfhydration by a Tag-Switch technique. Angew Chem Int Ed 53:575–581.  https://doi.org/10.1002/anie.201305876CrossRefGoogle Scholar
  20. 20.
    Wedmann R, Bertlein S, Macinkovic I et al (2014) Working with “H2S”: facts and apparent artifacts. Nitric Oxide 41:85–96.  https://doi.org/10.1016/j.niox.2014.06.003CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Filipovic MR (2015) Persulfidation (S-sulfhydration) and H2S. Handb Exp Pharmacol 230:29–59CrossRefGoogle Scholar
  22. 22.
    Cuevasanta E, Lange M, Bonanata J et al (2015) Reaction of hydrogen sulfide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide. J Biol Chem 290:26866–26880.  https://doi.org/10.1074/jbc.M115.672816CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Everett SA, Folkes LK, Wardman P, Asmus KD (1994) Free-radical repair by a novel perthiol: reversible hydrogen transfer and perthiyl radical formation. Free Radic Res 20:387–400CrossRefGoogle Scholar
  24. 24.
    Lu J, Holmgren A (2014) The thioredoxin superfamily in oxidative protein folding. Antioxid Redox Signal 21:457–470.  https://doi.org/10.1089/ars.2014.5849CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Burke-Gaffney A, Callister MEJ, Nakamura H (2005) Thioredoxin: friend or foe in human disease? Trends Pharmacol Sci 26:398–404.  https://doi.org/10.1016/j.tips.2005.06.005CrossRefPubMedGoogle Scholar
  26. 26.
    Wedmann R, Onderka C, Wei S et al (2016) Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation. Chem Sci.  https://doi.org/10.1039/C5SC04818DCrossRefGoogle Scholar
  27. 27.
    Sen N, Paul BD, Gadalla MM et al (2012) Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell 45:13–24.  https://doi.org/10.1016/j.molcel.2011.10.021CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Krishnan N, Fu C, Pappin DJ, Tonks NK (2011) H2S-Induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci Signal 4:1–26.  https://doi.org/10.1126/scisignal.2002329CrossRefGoogle Scholar
  29. 29.
    Yang G, Zhao K, Ju Y et al (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18:1906–1919.  https://doi.org/10.1089/ars.2012.4645CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hourihan JM, Kenna JG, Hayes JD (2013) The gasotransmitter hydrogen sulfide induces Nrf2-target genes by inactivating the Keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between Cys-226 and Cys-613. Antioxid Redox Signal 19:465–481.  https://doi.org/10.1089/ars.2012.4944CrossRefPubMedGoogle Scholar
  31. 31.
    Mustafa AK, Gadalla MM, Snyder SH (2009) Signaling by gasotransmitters. Sci Signal 2:re2.  https://doi.org/10.1126/scisignal.268re2CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pan J, Carroll KS (2013) Persulfide reactivity in the detection of protein S-sulfhydration. ACS Chem Biol 8:1110–1116.  https://doi.org/10.1021/cb4001052CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jaffrey SR, Erdjument-Bromage H, Ferris CD et al (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–197.  https://doi.org/10.1038/35055104CrossRefGoogle Scholar
  34. 34.
    Daly TJ, Olson JS, Matthews KS (1986) Formation of mixed disulfide adducts at cysteine-281 of the lactose repressor protein affects operator and inducer binding parameters. Biochemistry 25:5468–5474CrossRefGoogle Scholar
  35. 35.
    Peaper DR, Wearsch PA, Cresswell P (2005) Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex. EMBO J 24:3613–3623.  https://doi.org/10.1038/sj.emboj.7600814CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Karala A, Ruddock LW (2007) Does S-methyl methanethiosulfonate trap the thiol-disulfide state of proteins? Antioxid Redox Signal 9:527–531.  https://doi.org/10.1089/ars.2006.1473CrossRefPubMedGoogle Scholar
  37. 37.
    Gao XH, Krokowski D, Guan BJ et al (2015) Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response. eLife.  https://doi.org/10.7554/eLife.10067
  38. 38.
    Dóka É, Pader I, Bíró A et al (2016) A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems. Sci Adv 2:e1500968.  https://doi.org/10.1126/sciadv.1500968CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Longen S, Richter F, Köhler Y et al (2016) Quantitative persulfide site identification (qPerS-SID) reveals protein targets of H2S releasing donors in mammalian cells. Sci Rep 6:29808.  https://doi.org/10.1038/srep29808CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mishanina TV, Libiad M, Banerjee R (2015) Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 11:457–464.  https://doi.org/10.1038/nchembio.1834CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Boja ES, Fales HM (2001) Overalkylation of a protein digest with iodoacetamide. Anal Chem 73:3576–3582CrossRefGoogle Scholar
  42. 42.
    Reisz JA, Bechtold E, King SB et al (2013) Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. FEBS J 280:6150–6161.  https://doi.org/10.1111/febs.12535CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ida T, Sawa T, Ihara H et al (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci USA 111:7606–7611.  https://doi.org/10.1073/pnas.1321232111CrossRefGoogle Scholar
  44. 44.
    Snijder PM, Baratashvili M, Grzeschik NA et al (2015) Overexpression of cystathionine γ-lyase suppresses detrimental effects of spinocerebellar ataxia type 3. Mol Med 21:758.  https://doi.org/10.2119/molmed.2015.00221CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Emilia Kouroussis
    • 1
    • 2
  • Bikash Adhikari
    • 1
    • 2
  • Jasmina Zivanovic
    • 1
    • 2
  • Milos R. Filipovic
    • 1
    • 2
    Email author
  1. 1.Université de Bordeaux, IBGC, CNRS UMR 5095BordeauxFrance
  2. 2.Institut de Biochimie et Génétique Cellulaires, CNRS, UMR 5095BordeauxFrance

Personalised recommendations