Advertisement

Pharmacological Tools for the Study of H2S Contribution to Angiogenesis

  • Lucia MorbidelliEmail author
  • Martina Monti
  • Erika Terzuoli
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2007)

Abstract

Recently, hydrogen sulfide (H2S) has been characterized as an endogenous mediator able to control a series of cellular and tissue functions relevant for tissue homeostasis and repair such as angiogenesis. This chapter describes the tools and their use in a set of angiogenesis assays performed by using cultured endothelial cells in order to study the relevance of exogenous or endogenous H2S production and release during the occurrence of angiogenesis.

Key words

Angiogenesis Endothelial cells Hydrogen sulfide Cystathionine γ-lyase Proliferation Migration Chemoinvasion Permeability Gelatinase 

Notes

Acknowledgments

Part of this work was funded by Italian Space Agency (project “Tissue Repair in Microgravity” ASI N. 2013-090-R.O).

References

  1. 1.
    Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Ann Rev Cell Dev Biol 27:563–584CrossRefGoogle Scholar
  2. 2.
    Welti J, Loges S, Dimmeler S, Carmeliet P (2013) Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 123(8):3190–3200CrossRefGoogle Scholar
  3. 3.
    Ferrara N, Adamis AP (2016) Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov 15(6):385–403.  https://doi.org/10.1038/nrd.2015.17CrossRefPubMedGoogle Scholar
  4. 4.
    Bachetti T, Morbidelli L (2000) Endothelial cells in culture: a model for studying vascular functions. Pharmacol Res 42:9–19CrossRefGoogle Scholar
  5. 5.
    Ziche M, Morbidelli L, Masini E et al (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94:2036–2044CrossRefGoogle Scholar
  6. 6.
    Morbidelli L, Chang C-H, Douglas JG et al (1996) Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Phys 39(1):H411–H4156Google Scholar
  7. 7.
    Morbidelli L, Pyriochou A, Filippi S et al (2010) The soluble guanylyl cyclase inhibitor NS-2028 reduces vascular endothelial growth factor-induced angiogenesis and permeability. Am J Physiol Regul Integr Comp Physiol 298(3):R824–R832CrossRefGoogle Scholar
  8. 8.
    Terzuoli E, Monti M, Vellecco V et al (2015) Characterization of zofenoprilat as an inducer of functional angiogenesis through increased H2S availability. Br J Pharmacol 172(12):2961–2973.  https://doi.org/10.1111/bph.13101CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Monti M, Terzuoli E, Ziche M, Morbidelli L (2016) H2S dependent and independent anti-inflammatory activity of zofenoprilat in cells of the vascular wall. Pharmacol Res 113(Pt A):426–437.  https://doi.org/10.1016/j.phrs.2016.09.017CrossRefPubMedGoogle Scholar
  10. 10.
    Kimura H (2011) Hydrogen sulfide: its production, release and functions. Amino Acids 41(1):113–121.  https://doi.org/10.1007/s00726-010-0510-xCrossRefPubMedGoogle Scholar
  11. 11.
    Wallace JL, Wang R (2015) Hydrogen sulphide-based therapeutics: exploiting an unique but ubiquitous gasotransmitter. Nat Rev 14:329–345Google Scholar
  12. 12.
    Yang G, Wu L, Jiang B et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322(5901):587–590.  https://doi.org/10.1126/science.1162667CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yang G, Wang R (2015) H2S and blood vessels: an overview. Handb Exp Pharmacol 230:85–110CrossRefGoogle Scholar
  14. 14.
    Katsouda A, Bibli SI, Pyriochou A et al (2016) Regulation and role of endogenously produced hydrogen sulfide in angiogenesis. Pharmacol Res 113(Pt A):175–185.  https://doi.org/10.1016/j.phrs.2016.08.026CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Li L, Whiteman M, Guan YY, Neo KL et al (2008) Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117(18):2351–2360.  https://doi.org/10.1161/CIRCULATIONAHA.107.753467CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Szczesny B, Módis K, Yanagi K et al (2014) AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide 41:120–130.  https://doi.org/10.1016/j.niox.2014.04.008CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Monti M, Solito R, Puccetti L et al (2014) Protective effects of novel metal-nonoates on the cellular components of the vascular system. J Pharmacol Exp Ther 351(3):500–509.  https://doi.org/10.1124/jpet.114.218404CrossRefPubMedGoogle Scholar
  18. 18.
    Liu C, Pan J, Li S et al (2011) Capture and visualization of hydrogen sulfide via a fluorescent probe. Angew Chem Int Ed Engl 50(44):10327–10329CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lucia Morbidelli
    • 1
    Email author
  • Martina Monti
    • 1
  • Erika Terzuoli
    • 1
  1. 1.Department of Life SciencesUniversity of SienaSienaItaly

Personalised recommendations