Skip to main content

The Relaxant Mechanisms of Hydrogen Sulfide in Corpus Cavernosum

  • Protocol
  • First Online:
Vascular Effects of Hydrogen Sulfide

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2007))

Abstract

In several animal and human studies, the contribution of the endothelium, nitric oxide/soluble guanosine monophosphate (NO/cGMP) pathway, adenylyl cyclase, phosphodiesterase (PDE), potassium (K+) channels, L-type calcium channels, Na+-K+-ATPase, muscarinic acetylcholine receptors, RhoA/Rho-kinase pathway, and cyclooxygenase (COX)/arachidonic acid cascade on the relaxant mechanism of l-cysteine/H2S pathway in corpus cavernosum has been investigated. In this chapter the relaxant mechanisms of H2S in corpus cavernosum is discussed with data available in the current relevant literature. Also, in vitro experimental procedure for mice corpus cavernosum which used to investigate the relaxant effect of H2S is given in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16(13):1792–1798

    Article  Google Scholar 

  2. Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237(3):527–531

    Article  Google Scholar 

  3. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20(21):6008–6016

    Article  Google Scholar 

  4. Cheng Y, Ndisang JF, Tang G, Cao K, Wang R (2004) Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol 287(5):H2316–H2323

    Article  Google Scholar 

  5. Dhaese I, Lefebvre RA (2009) Myosin light chain phosphatase activation is involved in the hydrogen sulfide-induced relaxation in mouse gastric fundus. Eur J Pharmacol 606(1–3):180–186

    Article  Google Scholar 

  6. Dhaese I, Van Colen I, Lefebvre RA (2010) Mechanisms of action of hydrogen sulfide in relaxation of mouse distal colonic smooth muscle. Eur J Pharmacol 628(1–3):179–186

    Article  Google Scholar 

  7. Fusco F, di Villa Bianca R, Mitidieri E, Cirino G, Sorrentino R, Mirone V (2012) Sildenafil effect on the human bladder involves the L-cysteine/hydrogen sulfide pathway: a novel mechanism of action of phosphodiesterase type 5 inhibitors. Eur Urol 62(6):1174–1180

    Article  Google Scholar 

  8. Rashid S, Heer JK, Garle MJ, Alexander SP, Roberts RE (2013) Hydrogen sulphide-induced relaxation of porcine peripheral bronchioles. Br J Pharmacol 168(8):1902–1910

    Article  Google Scholar 

  9. Dunn WR, Alexander SP, Ralevic V, Roberts RE (2016) Effects of hydrogen sulphide in smooth muscle. Pharmacol Ther 158:101–113

    Article  Google Scholar 

  10. Srilatha B, Adaikan PG, Moore PK (2006) Possible role for the novel gasotransmitter hydrogen sulphide in erectile dysfunction—a pilot study. Eur J Pharmacol 535(1–3):280–282

    Article  Google Scholar 

  11. Srilatha B, Adaikan PG, Li L, Moore PK (2007) Hydrogen sulphide: a novel endogenous gasotransmitter facilitates erectile function. J Sex Med 4(5):1304–1311

    Article  Google Scholar 

  12. d’Emmanuele di Villa Bianca R, Sorrentino R, Maffia P, Mirone V, Imbimbo C, Fusco F, De Palma R, Ignarro LJ, Cirino G (2009) Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proc Natl Acad Sci U S A 106(11):4513–4518

    Article  Google Scholar 

  13. Ghasemi M, Dehpour AR, Moore KP, Mani AR (2012) Role of endogenous hydrogen sulfide in neurogenic relaxation of rat corpus cavernosum. Biochem Pharmacol 83(9):1261–1268

    Article  Google Scholar 

  14. Meng J, Ganesan Adaikan P, Srilatha B (2013) Hydrogen sulfide promotes nitric oxide production in corpus cavernosum by enhancing expression of endothelial nitric oxide synthase. Int J Impot Res 25(3):86–90

    Article  Google Scholar 

  15. Jupiter RC, Yoo D, Pankey EA, Reddy VV, Edward JA, Polhemus DJ, Peak TC, Katakam P, Kadowitz PJ (2015) Analysis of erectile responses to H2S donors in the anesthetized rat. Am J Physiol Heart Circ Physiol 309(5):H835–H843

    Article  Google Scholar 

  16. Aydinoglu F, Ogulener N (2016) Characterization of relaxant mechanism of H2S in mouse corpus cavernosum. Clin Exp Pharmacol Physiol 43(4):503–511

    Article  Google Scholar 

  17. Huang YM, Cheng Y, Jiang R (2012) Hydrogen sulfide and penile erection. Zhonghua Nan Ke Xue 18:823–826

    Google Scholar 

  18. Andersson KE, Wagner G (1995) Physiology of penile erection. Physiol Rev 75(1):191–236

    Article  Google Scholar 

  19. Ralph DJ (2005) Normal erectile function. Clin Cornerstone 7(1):13–18

    Article  Google Scholar 

  20. Bivalacqua TJ, Usta MF, Champion HC, Kadowitz PJ, Hellstrom WJ (2003) Endothelial dysfunction in erectile dysfunction: role of the endothelium in erectile physiology and disease. J Androl 24(6 Suppl):S17–S37

    Article  Google Scholar 

  21. Burnett AL (2006) The role of nitric oxide in erectile dysfunction: implications for medical therapy. J Clin Hypertens (Greenwich) 8(12):53–62

    Article  Google Scholar 

  22. Andersson KE (2001) Pharmacology of penile erection. Pharmacol Rev 53(3):417–450

    Google Scholar 

  23. Saenz de Tejada I, Blanco R, Goldstein I, Azadzoi K, de las Morenas A, Krane RJ, Cohen RA (1988) Cholinergic neurotransmission in human corpus cavernosum. I Respons Isolated Tissue J Physiol 254(3 Pt 2):H459–H467

    Google Scholar 

  24. Azadzoi KM, Kim N, Brown ML, Goldstein I, Cohen RA, Saenz de Tejada I (1992) Endothelium-derived nitric oxide and cyclooxygenase products modulate corpus cavernosum smooth muscle tone. J Urol 147(1):220–225

    Article  Google Scholar 

  25. Simonsen U, García-Sacristán A, Prieto D (2002) Penile arteries and erection. J Vasc Res 39(4):283–303

    Article  Google Scholar 

  26. Hanyu S, Iwanaga T, Kano K, Sato S (1987) Mechanism of penile erection in the dog. Pressure-flow study combined with morphological observation of vascular casts. Urol Int. 42(6):401–412

    Article  Google Scholar 

  27. Fazio L, Broc G (2004) Erectile dysfunction: management update. CMAJ 170(9):1429

    Article  Google Scholar 

  28. Andersson KE (2011) Mechanisms of penile erection and basis for pharmacological treatment of erectile dysfunction. Pharmacol Rev 63(4):811–859

    Article  Google Scholar 

  29. Kumcu EK, Aydinoglu F, Astarci E, Ogulener N (2016) The effect of sub-chronic systemic ethanol treatment on corpus cavernosal smooth muscle contraction: the contribution of RhoA/Rho-kinase. Naunyn Schmiedeberg’s Arch Pharmacol 389(3):249–258

    Article  Google Scholar 

  30. Pickard RS, King P, Zar MA, Powell PH (1994) Corpus cavernosal relaxation in impotent men. Br J Urol 74(4):485–491

    Article  Google Scholar 

  31. Kamaoun P (2004) Endogenous production of hydrogen sulfide in mammals. Amino Acids 26(3):243–254

    Google Scholar 

  32. Łowicka E, Bełtowski J (2007) Hydrogen sulfide (H2S)—the third gas of interest for pharmacologists. Pharmacol Rep 59(1):4–24

    Google Scholar 

  33. Mancardi D, Penna C, Merlino A, Del Soldato P, Wink DA, Pagliaro P (2009) Physiological and pharmacological features of the novel gasotransmitter: hydrogen sulfide. Biochim Biophys Acta 1787(7):864–872

    Article  Google Scholar 

  34. Martin GR, McKnight GW, Dicay MS, Coffin CS, Ferraz JG, Wallace JL (2010) Hydrogen sulphide synthesis in the rat and mouse gastrointestinal tract. Dig Liver Dis 42(2):103–109

    Article  Google Scholar 

  35. Whiteman M, Le Trionnaire S, Chopra M, Fox B, Whatmore J (2011) Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin Sci (Lond) 121(11):459–488

    Article  Google Scholar 

  36. Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13(8):499–507

    Article  Google Scholar 

  37. Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR Jr, Darley-Usmar VM, Kraus DW (2005) Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem 341(1):40–51

    Article  Google Scholar 

  38. Patel P, Vatish M, Heptinstall J, Wang R, Carson RJ (2009) The endogenous production of hydrogen sulphide in intrauterine tissues. Reprod Biol Endocrinol 7:10

    Article  Google Scholar 

  39. Fang L, Zhao J, Chen Y, Ma T, Xu G, Tang C, Liu X, Geng B (2009) Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator. J Hypertens 27(11):2174–2185

    Article  Google Scholar 

  40. Du JT, Li W, Yang JY, Tang CS, Li Q, Jin HF (2013) Hydrogen sulfide is endogenously generated in rat skeletal muscle and exerts a protective effect against oxidative stress. Chin Med J 126(5):930–936

    Google Scholar 

  41. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16(3):1066–1071

    Article  Google Scholar 

  42. Pae HO, Lee YC, Jo EK, Chung HT (2009) Subtle interplay of endogenous bioactive gases (NO, CO and H(2)S) in inflammation. Arch Pharm Res 32(8):1155–1162

    Article  Google Scholar 

  43. Munaron L, Avanzato D, Moccia F, Mancardi D (2013) Hydrogen sulfide as a regulator of calcium channels. Cell Calcium 53(2):77–84

    Article  Google Scholar 

  44. Kimura H (2010) Hydrogen sulfide: from brain to gut. Antioxid Redox Signal 12(9):1111–1123

    Article  Google Scholar 

  45. Kimura H (2011) Hydrogen sulfide: its production, release and functions. Amino Acids 41(1):113–121

    Article  Google Scholar 

  46. Szabó C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug 6(11):917–935

    Article  Google Scholar 

  47. Kabil O, Vitvitsky V, Xie P, Banerjee R (2011) The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid Redox Signal 15(2):363–372

    Article  Google Scholar 

  48. Al-Magableh MR, Hart JL (2011) Mechanism of vasorelaxation and role of endogenous hydrogen sulfide production in mouse aorta. Naunyn Schmiedeberg’s Arch Pharmacol 383(4):403–413

    Article  Google Scholar 

  49. Kaneko Y, Kimura Y, Kimura H, Niki I (2006) L-cysteine inhibits insulin release from the pancreatic beta-cell: possible involvement of metabolic production of hydrogen sulfide, a novel gasotransmitter. Diabetes 55(5):1391–1397

    Article  Google Scholar 

  50. d’Emmanuele di Villa Bianca R, Mitidieri E, Fusco F, Russo A, Pagliara V, Tramontano T, Donnarumma E, Mirone V, Cirino G, Russo G, Sorrentino R (2016) Urothelium muscarinic activation phosphorylates CBS(Ser227) via cGMP/PKG pathway causing human bladder relaxation through H2S production. Sci Rep 6:31491

    Article  Google Scholar 

  51. Diwakar L, Ravindranath V (2007) Inhibition of cystathionine-gamma-lyase leads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS. Neurochem Int 50(2):418–426

    Article  Google Scholar 

  52. Nagahara N, Ito T, Kitamura H, Nishino T (1998) Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochem Cell Biol 110(3):243–250

    Article  Google Scholar 

  53. Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H (2009) Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 146(5):623–626

    Article  Google Scholar 

  54. Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11(4):703–714

    Article  Google Scholar 

  55. Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4:1366

    Article  Google Scholar 

  56. Kimura H (2014) The physiological role of hydrogen sulfide and beyond. Nitric Oxide 41:4–10

    Article  Google Scholar 

  57. Martelli A, Testai L, Breschi MC, Lawson K, McKay NG, Miceli F, Taglialatela M, Calderone V (2013) Vasorelaxation by hydrogen sulphide involves activation of Kv7 potassium channels. Pharmacol Res 70(1):27–34

    Article  Google Scholar 

  58. Yetik-Anacak G, Dereli MV, Sevin G, Ozzayım O, Erac Y, Ahmed A (2015) Resveratrol stimulates hydrogen sulfide (H2 S) formation to relax murine corpus cavernosum. J Sex Med 12(10):2004–2012

    Article  Google Scholar 

  59. Yetik-Anacak G, Dikmen A, Coletta C, Mitidieri E, Dereli M, Donnarumma E, d’Emmanuele di Villa Bianca R, Sorrentino R (2016) Hydrogen sulfide compensates nitric oxide deficiency in murine corpus cavernosum. Pharmacol Res 113(Pt A):38–43

    Article  Google Scholar 

  60. Srilatha B, Muthulakshmi P, Adaikan PG, Moore PK (2012) Endogenous hydrogen sulfide insufficiency as a predictor of sexual dysfunction in aging rats. Aging Male 15(3):153–158

    Article  Google Scholar 

  61. Zhu XB, Jiang J, Jiang R, Chen F (2014) Expressions of CSE and CBS in the corpus cavernosum of spontaneous hypertensive rats. Zhonghua Nan Ke Xue 20(1):4–9

    Google Scholar 

  62. Huang YM, Xia JY, Jiang R (2014) Expressions of CSE and CBS in the penile corpus cavernosum of hyperglycemia rats and their implications. Zhonghua Nan Ke Xue 20(4):299–303

    Google Scholar 

  63. Zuo C, Huang YM, Jiang R, Yang HF, Cheng B, Chen F (2014) Endogenous hydrogen sulfide and androgen deficiency-induced erectile dysfunction in rats. Zhonghua Nan Ke Xue 20(7):605–612

    Google Scholar 

  64. Zhang Y, Yang J, Wang T, Wang SG, Liu JH, Yin CP, Ye ZQ (2016) Decreased endogenous hydrogen sulfide generation in penile tissues of diabetic rats with erectile dysfunction. J Sex Med 13(3):350–360

    Article  Google Scholar 

  65. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322(5901):587–590

    Article  Google Scholar 

  66. Kim N, Azadzoi KM, Goldstein I, Saenz de Tejada I (1991) A nitric oxide-like factor mediates nonadrenergic-noncholinergic neurogenic relaxation of penile corpus cavernosum smooth muscle. J Clin Invest 88(1):112–118

    Article  Google Scholar 

  67. Hedlund P, Aszodi A, Pfeifer A, Alm P, Hofmann F, Ahmad M, Fassler R, Andersson KE (2000) Erectile dysfunction in cyclic GMP-dependent kinase I-deficient mice. Proc Natl Acad Sci U S A 97(5):2349–2354

    Article  Google Scholar 

  68. Zhao W, Wang R (2002) H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 283(2):H474–H480

    Article  Google Scholar 

  69. Wang YF, Mainali P, Tang CS, Shi L, Zhang CY, Yan H, Liu XQ, Du JB (2008) Effects of nitric oxide and hydrogen sulfide on the relaxation of pulmonary arteries in rats. Chin Med J 121(5):420–423

    Article  Google Scholar 

  70. Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109(2):366–398

    Article  Google Scholar 

  71. Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52(3):375–414

    Google Scholar 

  72. Essayan DM (2001) Cyclic nucleotide phosphodiesterases. J Allergy Clin Immunol 108(5):671–680

    Article  Google Scholar 

  73. Aydinoglu F, Ogulener N (2016) The effects of cyclooxygenase, nitric oxide, phosphodiesterase IV and Rho-kinase inhibitors on hydrogen sulfide-induced relaxant response in mouse corpus cavernosum. Paper presented at the 7th European Congress of Pharmacology, Istanbul, 26–30 June 2016

    Google Scholar 

  74. Gupta S, Moreland RB, Munarriz R, Daley J, Goldstein I, Saenz de Tejada I (1995) Possible role of Na(+)-K(+)-ATPase in the regulation of human corpus cavernosum smooth muscle contractility by nitric oxide. Br J Pharmacol 116(4):2201–2206

    Article  Google Scholar 

  75. Fernandes VS, Xin W, Petkov GV. Novel mechanism of hydrogen sulfide-induced guinea pig urinary bladder smooth muscle contraction: role of BK channels and cholinergic neurotransmission. Am J Physiol Cell Physiol 309(2):C107–16

    Article  Google Scholar 

  76. Dalkir FT, Aydinoglu F, Ogulener N (2016) The interaction of L-cysteine/hydrogen sulfide pathway and muscarinic acetylcholine receptors (mAChRs) in Mouse Corpus Cavernosum. Paper presented at the 7th European Congress of Pharmacology, Istanbul, 26–30 June 2016

    Google Scholar 

  77. Chitaley K, Wingard CJ, Clinton Webb R, Branam H, Stopper VS, Lewis RW, Mills TM (2001) Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway. Nat Med 7:119–122

    Article  Google Scholar 

  78. Rees RW, Ralph DJ, Royle M, Moncada S, Cellek S (2001) Y-27632, an inhibitor of Rho-kinase, antagonizes noradrenergic contractions in the rabbit and human penile corpus cavernosum. Br J Pharmacol 133:455–458

    Article  Google Scholar 

  79. Waldkirch E, Uckert S, Yildirim H, Sohn M, Jonas U, Stief CG, Andersson KE, Hedlund P (2005) Cyclic AMP-specific and cyclic GMP-specific phosphodiesterase isoenzymes in human cavernous arteries—immunohistochemical distribution and functional significance. World J Urol 23(6):405–410

    Article  Google Scholar 

  80. Sáenz de Tejada I, Angulo J, Cellek S, González-Cadavid N, Heaton J, Pickard R, Simonsen U (2004) Physiology of erectile function. J Sex Med 1(3):254–265

    Article  Google Scholar 

  81. Shukla N, Rossoni G, Hotston M, Sparatore A, Del Soldato P, Tazzari V, Persad R, Angelini GD, Jeremy JY (2009) Effect of hydrogen sulphide-donating sildenafil (ACS6) on erectile function and oxidative stress in rabbit isolated corpus cavernosum and in hypertensive rats. BJU Int 103:1522–1529

    Article  Google Scholar 

  82. Gocmen C, Uçar P, Singirik E, Dikmen A, Baysal F (1997) An in vitro study of nonadrenergic-noncholinergic activity on the cavernous tissue of mouse. Urol Res 25(4):269–275

    Article  Google Scholar 

  83. Mizusawa H, Hedlund P, Håkansson A, Alm P, Andersson KE (2001) Morphological and functional in vitro and in vivo characterization of the mouse corpus cavernosum. Br J Pharmacol 132(6):1333–1341

    Article  Google Scholar 

  84. Baracat JS, Teixeira CE, Okuyama CE, Priviero FB, Faro R, Antunes E, De Nucci G (2003) Relaxing effects induced by the soluble guanylyl cyclase stimulator BAY 41-2272 in human and rabbit corpus cavernosum. Eur J Pharmacol 477(2):163–169

    Article  Google Scholar 

  85. Ayajiki K, Hayashida H, Tawa M, Okamura T, Toda N (2009) Characterization of nitrergic function in monkey penile erection in vivo and in vitro. Hypertens Res 32(8):685–689

    Article  Google Scholar 

  86. Angulo J, Peiró C, Sanchez-Ferrer CF, Gabancho S, Cuevas P, Gupta S, Sáenz de Tejada I (2001) Differential effects of serotonin reuptake inhibitors on erectile responses, NO-production, and neuronal NO synthase expression in rat corpus cavernosum tissue. Br J Pharmacol 134(6):1190–1194

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aydinoglu, F., Ogulener, N. (2019). The Relaxant Mechanisms of Hydrogen Sulfide in Corpus Cavernosum. In: Bełtowski, J. (eds) Vascular Effects of Hydrogen Sulfide. Methods in Molecular Biology, vol 2007. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9528-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9528-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9527-1

  • Online ISBN: 978-1-4939-9528-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics