The Relaxant Mechanisms of Hydrogen Sulfide in Corpus Cavernosum

  • Fatma Aydinoglu
  • Nuran Ogulener
Part of the Methods in Molecular Biology book series (MIMB, volume 2007)


In several animal and human studies, the contribution of the endothelium, nitric oxide/soluble guanosine monophosphate (NO/cGMP) pathway, adenylyl cyclase, phosphodiesterase (PDE), potassium (K+) channels, L-type calcium channels, Na+-K+-ATPase, muscarinic acetylcholine receptors, RhoA/Rho-kinase pathway, and cyclooxygenase (COX)/arachidonic acid cascade on the relaxant mechanism of l-cysteine/H2S pathway in corpus cavernosum has been investigated. In this chapter the relaxant mechanisms of H2S in corpus cavernosum is discussed with data available in the current relevant literature. Also, in vitro experimental procedure for mice corpus cavernosum which used to investigate the relaxant effect of H2S is given in detail.

Key words

Corpus cavernosum Erectile function Erectile dysfunction 


  1. 1.
    Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16(13):1792–1798PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237(3):527–531PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20(21):6008–6016PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Cheng Y, Ndisang JF, Tang G, Cao K, Wang R (2004) Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol 287(5):H2316–H2323PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Dhaese I, Lefebvre RA (2009) Myosin light chain phosphatase activation is involved in the hydrogen sulfide-induced relaxation in mouse gastric fundus. Eur J Pharmacol 606(1–3):180–186PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Dhaese I, Van Colen I, Lefebvre RA (2010) Mechanisms of action of hydrogen sulfide in relaxation of mouse distal colonic smooth muscle. Eur J Pharmacol 628(1–3):179–186PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Fusco F, di Villa Bianca R, Mitidieri E, Cirino G, Sorrentino R, Mirone V (2012) Sildenafil effect on the human bladder involves the L-cysteine/hydrogen sulfide pathway: a novel mechanism of action of phosphodiesterase type 5 inhibitors. Eur Urol 62(6):1174–1180PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Rashid S, Heer JK, Garle MJ, Alexander SP, Roberts RE (2013) Hydrogen sulphide-induced relaxation of porcine peripheral bronchioles. Br J Pharmacol 168(8):1902–1910PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Dunn WR, Alexander SP, Ralevic V, Roberts RE (2016) Effects of hydrogen sulphide in smooth muscle. Pharmacol Ther 158:101–113PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Srilatha B, Adaikan PG, Moore PK (2006) Possible role for the novel gasotransmitter hydrogen sulphide in erectile dysfunction—a pilot study. Eur J Pharmacol 535(1–3):280–282PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Srilatha B, Adaikan PG, Li L, Moore PK (2007) Hydrogen sulphide: a novel endogenous gasotransmitter facilitates erectile function. J Sex Med 4(5):1304–1311PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    d’Emmanuele di Villa Bianca R, Sorrentino R, Maffia P, Mirone V, Imbimbo C, Fusco F, De Palma R, Ignarro LJ, Cirino G (2009) Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proc Natl Acad Sci U S A 106(11):4513–4518PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ghasemi M, Dehpour AR, Moore KP, Mani AR (2012) Role of endogenous hydrogen sulfide in neurogenic relaxation of rat corpus cavernosum. Biochem Pharmacol 83(9):1261–1268PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Meng J, Ganesan Adaikan P, Srilatha B (2013) Hydrogen sulfide promotes nitric oxide production in corpus cavernosum by enhancing expression of endothelial nitric oxide synthase. Int J Impot Res 25(3):86–90PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Jupiter RC, Yoo D, Pankey EA, Reddy VV, Edward JA, Polhemus DJ, Peak TC, Katakam P, Kadowitz PJ (2015) Analysis of erectile responses to H2S donors in the anesthetized rat. Am J Physiol Heart Circ Physiol 309(5):H835–H843PubMedPubMedCentralGoogle Scholar
  16. 16.
    Aydinoglu F, Ogulener N (2016) Characterization of relaxant mechanism of H2S in mouse corpus cavernosum. Clin Exp Pharmacol Physiol 43(4):503–511PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Huang YM, Cheng Y, Jiang R (2012) Hydrogen sulfide and penile erection. Zhonghua Nan Ke Xue 18:823–826PubMedPubMedCentralGoogle Scholar
  18. 18.
    Andersson KE, Wagner G (1995) Physiology of penile erection. Physiol Rev 75(1):191–236PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ralph DJ (2005) Normal erectile function. Clin Cornerstone 7(1):13–18PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Bivalacqua TJ, Usta MF, Champion HC, Kadowitz PJ, Hellstrom WJ (2003) Endothelial dysfunction in erectile dysfunction: role of the endothelium in erectile physiology and disease. J Androl 24(6 Suppl):S17–S37PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Burnett AL (2006) The role of nitric oxide in erectile dysfunction: implications for medical therapy. J Clin Hypertens (Greenwich) 8(12):53–62CrossRefGoogle Scholar
  22. 22.
    Andersson KE (2001) Pharmacology of penile erection. Pharmacol Rev 53(3):417–450PubMedPubMedCentralGoogle Scholar
  23. 23.
    Saenz de Tejada I, Blanco R, Goldstein I, Azadzoi K, de las Morenas A, Krane RJ, Cohen RA (1988) Cholinergic neurotransmission in human corpus cavernosum. I Respons Isolated Tissue J Physiol 254(3 Pt 2):H459–H467Google Scholar
  24. 24.
    Azadzoi KM, Kim N, Brown ML, Goldstein I, Cohen RA, Saenz de Tejada I (1992) Endothelium-derived nitric oxide and cyclooxygenase products modulate corpus cavernosum smooth muscle tone. J Urol 147(1):220–225PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Simonsen U, García-Sacristán A, Prieto D (2002) Penile arteries and erection. J Vasc Res 39(4):283–303PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hanyu S, Iwanaga T, Kano K, Sato S (1987) Mechanism of penile erection in the dog. Pressure-flow study combined with morphological observation of vascular casts. Urol Int. 42(6):401–412PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Fazio L, Broc G (2004) Erectile dysfunction: management update. CMAJ 170(9):1429PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Andersson KE (2011) Mechanisms of penile erection and basis for pharmacological treatment of erectile dysfunction. Pharmacol Rev 63(4):811–859PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kumcu EK, Aydinoglu F, Astarci E, Ogulener N (2016) The effect of sub-chronic systemic ethanol treatment on corpus cavernosal smooth muscle contraction: the contribution of RhoA/Rho-kinase. Naunyn Schmiedeberg's Arch Pharmacol 389(3):249–258CrossRefGoogle Scholar
  30. 30.
    Pickard RS, King P, Zar MA, Powell PH (1994) Corpus cavernosal relaxation in impotent men. Br J Urol 74(4):485–491PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kamaoun P (2004) Endogenous production of hydrogen sulfide in mammals. Amino Acids 26(3):243–254Google Scholar
  32. 32.
    Łowicka E, Bełtowski J (2007) Hydrogen sulfide (H2S)—the third gas of interest for pharmacologists. Pharmacol Rep 59(1):4–24PubMedPubMedCentralGoogle Scholar
  33. 33.
    Mancardi D, Penna C, Merlino A, Del Soldato P, Wink DA, Pagliaro P (2009) Physiological and pharmacological features of the novel gasotransmitter: hydrogen sulfide. Biochim Biophys Acta 1787(7):864–872PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Martin GR, McKnight GW, Dicay MS, Coffin CS, Ferraz JG, Wallace JL (2010) Hydrogen sulphide synthesis in the rat and mouse gastrointestinal tract. Dig Liver Dis 42(2):103–109PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Whiteman M, Le Trionnaire S, Chopra M, Fox B, Whatmore J (2011) Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin Sci (Lond) 121(11):459–488CrossRefGoogle Scholar
  36. 36.
    Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13(8):499–507CrossRefGoogle Scholar
  37. 37.
    Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR Jr, Darley-Usmar VM, Kraus DW (2005) Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem 341(1):40–51PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Patel P, Vatish M, Heptinstall J, Wang R, Carson RJ (2009) The endogenous production of hydrogen sulphide in intrauterine tissues. Reprod Biol Endocrinol 7:10PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fang L, Zhao J, Chen Y, Ma T, Xu G, Tang C, Liu X, Geng B (2009) Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator. J Hypertens 27(11):2174–2185PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Du JT, Li W, Yang JY, Tang CS, Li Q, Jin HF (2013) Hydrogen sulfide is endogenously generated in rat skeletal muscle and exerts a protective effect against oxidative stress. Chin Med J 126(5):930–936PubMedPubMedCentralGoogle Scholar
  41. 41.
    Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16(3):1066–1071PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Pae HO, Lee YC, Jo EK, Chung HT (2009) Subtle interplay of endogenous bioactive gases (NO, CO and H(2)S) in inflammation. Arch Pharm Res 32(8):1155–1162PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Munaron L, Avanzato D, Moccia F, Mancardi D (2013) Hydrogen sulfide as a regulator of calcium channels. Cell Calcium 53(2):77–84PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kimura H (2010) Hydrogen sulfide: from brain to gut. Antioxid Redox Signal 12(9):1111–1123PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Kimura H (2011) Hydrogen sulfide: its production, release and functions. Amino Acids 41(1):113–121CrossRefGoogle Scholar
  46. 46.
    Szabó C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug 6(11):917–935CrossRefGoogle Scholar
  47. 47.
    Kabil O, Vitvitsky V, Xie P, Banerjee R (2011) The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid Redox Signal 15(2):363–372PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Al-Magableh MR, Hart JL (2011) Mechanism of vasorelaxation and role of endogenous hydrogen sulfide production in mouse aorta. Naunyn Schmiedeberg’s Arch Pharmacol 383(4):403–413CrossRefGoogle Scholar
  49. 49.
    Kaneko Y, Kimura Y, Kimura H, Niki I (2006) L-cysteine inhibits insulin release from the pancreatic beta-cell: possible involvement of metabolic production of hydrogen sulfide, a novel gasotransmitter. Diabetes 55(5):1391–1397PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    d’Emmanuele di Villa Bianca R, Mitidieri E, Fusco F, Russo A, Pagliara V, Tramontano T, Donnarumma E, Mirone V, Cirino G, Russo G, Sorrentino R (2016) Urothelium muscarinic activation phosphorylates CBS(Ser227) via cGMP/PKG pathway causing human bladder relaxation through H2S production. Sci Rep 6:31491PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Diwakar L, Ravindranath V (2007) Inhibition of cystathionine-gamma-lyase leads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS. Neurochem Int 50(2):418–426PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Nagahara N, Ito T, Kitamura H, Nishino T (1998) Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochem Cell Biol 110(3):243–250PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H (2009) Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 146(5):623–626PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11(4):703–714PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4:1366PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kimura H (2014) The physiological role of hydrogen sulfide and beyond. Nitric Oxide 41:4–10PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Martelli A, Testai L, Breschi MC, Lawson K, McKay NG, Miceli F, Taglialatela M, Calderone V (2013) Vasorelaxation by hydrogen sulphide involves activation of Kv7 potassium channels. Pharmacol Res 70(1):27–34PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Yetik-Anacak G, Dereli MV, Sevin G, Ozzayım O, Erac Y, Ahmed A (2015) Resveratrol stimulates hydrogen sulfide (H2 S) formation to relax murine corpus cavernosum. J Sex Med 12(10):2004–2012PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Yetik-Anacak G, Dikmen A, Coletta C, Mitidieri E, Dereli M, Donnarumma E, d’Emmanuele di Villa Bianca R, Sorrentino R (2016) Hydrogen sulfide compensates nitric oxide deficiency in murine corpus cavernosum. Pharmacol Res 113(Pt A):38–43PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Srilatha B, Muthulakshmi P, Adaikan PG, Moore PK (2012) Endogenous hydrogen sulfide insufficiency as a predictor of sexual dysfunction in aging rats. Aging Male 15(3):153–158PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Zhu XB, Jiang J, Jiang R, Chen F (2014) Expressions of CSE and CBS in the corpus cavernosum of spontaneous hypertensive rats. Zhonghua Nan Ke Xue 20(1):4–9PubMedPubMedCentralGoogle Scholar
  62. 62.
    Huang YM, Xia JY, Jiang R (2014) Expressions of CSE and CBS in the penile corpus cavernosum of hyperglycemia rats and their implications. Zhonghua Nan Ke Xue 20(4):299–303PubMedPubMedCentralGoogle Scholar
  63. 63.
    Zuo C, Huang YM, Jiang R, Yang HF, Cheng B, Chen F (2014) Endogenous hydrogen sulfide and androgen deficiency-induced erectile dysfunction in rats. Zhonghua Nan Ke Xue 20(7):605–612PubMedPubMedCentralGoogle Scholar
  64. 64.
    Zhang Y, Yang J, Wang T, Wang SG, Liu JH, Yin CP, Ye ZQ (2016) Decreased endogenous hydrogen sulfide generation in penile tissues of diabetic rats with erectile dysfunction. J Sex Med 13(3):350–360PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322(5901):587–590PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kim N, Azadzoi KM, Goldstein I, Saenz de Tejada I (1991) A nitric oxide-like factor mediates nonadrenergic-noncholinergic neurogenic relaxation of penile corpus cavernosum smooth muscle. J Clin Invest 88(1):112–118PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hedlund P, Aszodi A, Pfeifer A, Alm P, Hofmann F, Ahmad M, Fassler R, Andersson KE (2000) Erectile dysfunction in cyclic GMP-dependent kinase I-deficient mice. Proc Natl Acad Sci U S A 97(5):2349–2354PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zhao W, Wang R (2002) H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 283(2):H474–H480PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Wang YF, Mainali P, Tang CS, Shi L, Zhang CY, Yan H, Liu XQ, Du JB (2008) Effects of nitric oxide and hydrogen sulfide on the relaxation of pulmonary arteries in rats. Chin Med J 121(5):420–423PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109(2):366–398PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52(3):375–414PubMedPubMedCentralGoogle Scholar
  72. 72.
    Essayan DM (2001) Cyclic nucleotide phosphodiesterases. J Allergy Clin Immunol 108(5):671–680PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Aydinoglu F, Ogulener N (2016) The effects of cyclooxygenase, nitric oxide, phosphodiesterase IV and Rho-kinase inhibitors on hydrogen sulfide-induced relaxant response in mouse corpus cavernosum. Paper presented at the 7th European Congress of Pharmacology, Istanbul, 26–30 June 2016Google Scholar
  74. 74.
    Gupta S, Moreland RB, Munarriz R, Daley J, Goldstein I, Saenz de Tejada I (1995) Possible role of Na(+)-K(+)-ATPase in the regulation of human corpus cavernosum smooth muscle contractility by nitric oxide. Br J Pharmacol 116(4):2201–2206PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Fernandes VS, Xin W, Petkov GV. Novel mechanism of hydrogen sulfide-induced guinea pig urinary bladder smooth muscle contraction: role of BK channels and cholinergic neurotransmission. Am J Physiol Cell Physiol 309(2):C107–16PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Dalkir FT, Aydinoglu F, Ogulener N (2016) The interaction of L-cysteine/hydrogen sulfide pathway and muscarinic acetylcholine receptors (mAChRs) in Mouse Corpus Cavernosum. Paper presented at the 7th European Congress of Pharmacology, Istanbul, 26–30 June 2016Google Scholar
  77. 77.
    Chitaley K, Wingard CJ, Clinton Webb R, Branam H, Stopper VS, Lewis RW, Mills TM (2001) Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway. Nat Med 7:119–122PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Rees RW, Ralph DJ, Royle M, Moncada S, Cellek S (2001) Y-27632, an inhibitor of Rho-kinase, antagonizes noradrenergic contractions in the rabbit and human penile corpus cavernosum. Br J Pharmacol 133:455–458PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Waldkirch E, Uckert S, Yildirim H, Sohn M, Jonas U, Stief CG, Andersson KE, Hedlund P (2005) Cyclic AMP-specific and cyclic GMP-specific phosphodiesterase isoenzymes in human cavernous arteries—immunohistochemical distribution and functional significance. World J Urol 23(6):405–410PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Sáenz de Tejada I, Angulo J, Cellek S, González-Cadavid N, Heaton J, Pickard R, Simonsen U (2004) Physiology of erectile function. J Sex Med 1(3):254–265PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Shukla N, Rossoni G, Hotston M, Sparatore A, Del Soldato P, Tazzari V, Persad R, Angelini GD, Jeremy JY (2009) Effect of hydrogen sulphide-donating sildenafil (ACS6) on erectile function and oxidative stress in rabbit isolated corpus cavernosum and in hypertensive rats. BJU Int 103:1522–1529PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Gocmen C, Uçar P, Singirik E, Dikmen A, Baysal F (1997) An in vitro study of nonadrenergic-noncholinergic activity on the cavernous tissue of mouse. Urol Res 25(4):269–275PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Mizusawa H, Hedlund P, Håkansson A, Alm P, Andersson KE (2001) Morphological and functional in vitro and in vivo characterization of the mouse corpus cavernosum. Br J Pharmacol 132(6):1333–1341PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Baracat JS, Teixeira CE, Okuyama CE, Priviero FB, Faro R, Antunes E, De Nucci G (2003) Relaxing effects induced by the soluble guanylyl cyclase stimulator BAY 41-2272 in human and rabbit corpus cavernosum. Eur J Pharmacol 477(2):163–169PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Ayajiki K, Hayashida H, Tawa M, Okamura T, Toda N (2009) Characterization of nitrergic function in monkey penile erection in vivo and in vitro. Hypertens Res 32(8):685–689PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Angulo J, Peiró C, Sanchez-Ferrer CF, Gabancho S, Cuevas P, Gupta S, Sáenz de Tejada I (2001) Differential effects of serotonin reuptake inhibitors on erectile responses, NO-production, and neuronal NO synthase expression in rat corpus cavernosum tissue. Br J Pharmacol 134(6):1190–1194PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fatma Aydinoglu
    • 1
  • Nuran Ogulener
    • 2
  1. 1.Department of Pharmacology, Pharmacy FacultyCukurova UniversityAdanaTurkey
  2. 2.Department of Pharmacology, Medical FacultyCukurova UniversityAdanaTurkey

Personalised recommendations